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Abstract

This paper introduces a new method to derive moment restrictions in dynamic discrete

choice models with strictly exogenous regressors, fixed effects and logistic errors. We

show how the structure of logit probabilities and basic properties of rational fractions

can be used to construct moment functions free of the fixed effects in a way that scales

naturally with the lag order and the number of observed periods. We demonstrate

the approach in binary response models of arbitrary lag order, first-order panel vector

autoregressions and dynamic multinomial logit models. The semiparametric efficiency

bound is characterized for the leading binary case with one lag. Finally, we illustrate

our results in an application investigating the dynamics of drug consumption among

young people.
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1 Introduction

Dynamic discrete choice models with logistic errors and unobserved individual heterogeneity

underlie much work examining state-dependence in economics. Examples include studies

of labor market outcomes (Magnac (2000)), welfare participation (Chay et al. (1999), Card

and Hyslop (2005)), health plan choices (Pakes et al. (2021)), drug addiction (Deza (2015)),

and even transitivity in networks (Graham (2013), Graham (2016)). By nature, inference in

such models can be complex, but a powerful principle is to look for orthogonality restrictions

independent of unit-specific effects to secure consistent estimation of common parameters.

In short panels, these so-called fixed effects strategies effectively bypass two issues: i) the

incidental parameters problem associated with maximum likelihood estimation (Neyman and

Scott (1948)), ii) risking misspecification by parameterizing individual heterogeneity and its

relationship with initial outcomes which are inherently unknown.

An early breakthrough providing restrictions of this type in simple models with only a

lagged outcome variable came from conditional likelihood, as exemplified by Cox (1958),

Chamberlain (1985), Magnac (2000). This approach leverages sufficient statistics tied to

the logistic assumption to eliminate the fixed effect. Subsequently, Honoré and Kyriazidou

(2000) extended this idea to models with strictly exogenous regressors, showing its viability

if the regressors remain constant over specific time periods (see also, Honoré and Kyriazidou

(2019), Muris et al. (2020)). While relevant in certain settings, the stability requirement

on the regressors does impose two limitations for the conditional likelihood approach: it

inherently rules out time effects and implies rates of convergence slower than
√
N for contin-

uous explanatory variables. Furthermore, calculations from Honoré and Kyriazidou (2000)

suggested that it does not easily extend to models with a higher lag order. These short-

comings have motivated the search for alternative solutions, culminating in a moment-based

paradigm. Its essence is the construction of moment functions free from fixed effects enabling

general estimation at
√
N -rate. Kitazawa et al. (2013, 2016) and Kitazawa (2022) represent

creative examples of this idea for the AR(1) - autoregressive of order one - logit model.

A more systematic framework to obtain moment restrictions is offered by functional differ-

encing (Bonhomme (2012)), and the recent contributions of Honoré and Weidner (2020),
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Honoré et al. (2021), and to some extent Dobronyi et al. (2021)1 can be viewed as powerful

displays of this technique in discrete choice models when coupled with symbolic computing

(e.g Mathematica).

The core contribution of this paper is a new general approach to construct moment re-

strictions in a broad class of dynamic fixed effects logit models (henceforth DFEL), where

unit-specific effects feature as “heterogeneous” intercepts. This class encompasses many

specifications commonly encountered in applications but excludes models with heterogeneous

coefficients on lagged outcomes and/or regressors as in Chamberlain (1985) and Browning

and Carro (2014). Unlike recent competing methods, ours does not require numerical experi-

mentation or symbolic computing, enabling us to advance on multiple fronts. First, we show

that the existence of moment restrictions in DFEL models is rooted in the rational fractional

structure of logit probabilities with respect to fixed effects. Fundamentally, this is because

products of rational fractions can be decomposed into sums of simpler rational fractions.

Leveraging this fact, we formally resolve open conjectures regarding the number of moment

conditions available in binary logit models. Second, our procedure scales efficiently with

the number of time periods, and also with the lag order in binary response models. A key

result is the discovery of a novel recursive formula that enables the construction of moment

restrictions for an AR(p) from features of an AR(p− 1). Third, the algebraic foundation of

our procedure allows us to easily derive extensions for the VAR(1) logit model, the dynamic

multinomial logit model, and dynamic network formation models in the spirit of Graham

(2013), Graham (2016). Detailed results for the latter two models are provided in the Online

Appendix.

The method exploits two key insights. First, the (individual-specific) transition prob-

abilities of logit models can often be expressed as conditional expectations of functions of

observables and common parameters given the initial condition, the regressors and the fixed

effects. We refer to these moment functions as transition functions. They have the crucial

feature of not depending on individual fixed effects. Second, with sufficient time periods,

many transition probabilities admit at least two distinct transition functions. Together, these

1Dobronyi et al. (2021) also derive moment inequality conditions in AR(1) and AR(2) logit models which
is beyond the scope of standard functional differencing.
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insights motivate a natural two-step recipe to systematically form valid moment functions:

Step 1) compute the model’s transition functions, Step 2) take differences of two transition

functions associated to the same transition probability. We find that a careful application

of this procedure yields all the moment equality restrictions available for binary response

models. We build on this property to characterize the efficiency bound in the leading AR(1)

logit model, complementing Hahn (2001) and Gu et al. (2023).

The remainder of the paper proceeds as follows. In Section 2, we introduce the class of

models under consideration following Honoré and Weidner (2020) relatively closely, and out-

line our methodology for obtaining moment restrictions. Section 3 gives a detailed analysis

of the baseline AR(1) logit model. We present a new perspective to enumerate the available

moment restrictions, demonstrate our approach for deriving their expressions, and charac-

terize the efficiency bound. In Section 4 and Section 5, we provide some extensions for AR(p)

logit models and the VAR(1) logit model. Section 6 contains an empirical application inves-

tigating the dynamics of drug consumption among young people. Section 7 concludes. The

Appendix contains proofs of key results. The Online Appendix compiles auxiliary results

and discussions of the dynamic multinomial logit model and a dynamic network formation

model, which may be of independent interest.

2 Setup, objective, and methodology

General setup. The setting is panel data with i = 1, . . . , N individuals followed over

t = 1, . . . , T periods. The econometrician observes (Y 0
i , Yi, Xi) for all individuals, where

Yi = (Yi1, . . . , YiT ) ∈ YT denotes the endogenous discrete outcomes, Xi = (Xi1, . . . , XiT ) ∈

X T the covariates and Y 0
i = (Yi0, Yi−1, . . .) the initial condition, i.e the set of observed

outcomes prior to period t = 1. The models we are considering feature two components.

The first component is a parametric model of outcomes Yi conditional on strictly exogenous

explanatory variables (Y 0
i , Xi) and time-invariant unobserved heterogeneity Ai ∈ A. For a

known lag order p ≥ 1, and using the shorthand zts = (zt, zt−1, . . . , zs) for s < t, it takes the
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form

f(y|y0, x, a) = P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) =

T−1∏
t=0

π
yt+1|ytt−(p−1)

t (a, x; θ0)

where π
yt+1|ytt−(p−1)

t (a, x; θ0) = P (Yit+1 = yt+1|Y t
it−(p−1) = ytt−(p−1), Xi = x,Ai = a) denote

the model’s (individual-specific) transition probabilities known up to the finite dimensional

parameter θ0. We shall omit the dependence on θ0 in the sequel. The second component

of the model is the distribution of heterogeneity Ai conditional on (Y 0
i = y0, Xi = x) which

we denote as q(.|y0, x). Following a large literature in panel data, we leave it unrestricted

thereby treating Ai as a “fixed effect”. Jointly, the two model components map to conditional

outcome probabilities

f(y|y0, x) = P (Yi = y|Y 0
i = y0, Xi = x) =

∫
A
f(y|y0, x, a)q(a|y0, x)da

that are identified in the population. It is assumed that (Y 0
i , Yi, Xi, Ai) is i.i.d across indi-

viduals.

Objective. We are primarily concerned with the identification and estimation of θ0 in short

panels, i.e for fixed T . To this end, the chief objective of this paper is to show how to

construct moment functions ψθ(Yi, Y
0
i , Xi) free of the fixed effect parameter that are valid

in the sense that:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi, Ai
]
= 0 (1)

When this is possible, the law of iterated expectations implies the conditional moment:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi

]
= 0

which can in turn be leveraged to assess the identifiability of θ0 and form the basis of an

estimation strategy by GMM or empirical likelihood2. This is the central idea underlying

functional differencing (Bonhomme (2012)) and was recently applied by Honoré and Weidner

2Notice that for E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi

]
= 0 to hold irrespective of the distribution of the fixed effect,

(1) must be satisfied. If (1) were strictly positive on a set of positive Lebesgue measure, there would exist
distributions of fixed effects q supported on that set inducing violations of the desired moment equality. The
same holds true if (1) were instead strictly negative on a set of positive Lebesgue measure.

5



(2020) to derive valid moment conditions for a class of dynamic logit models with scalar fixed

effects. We borrow the same insight but instead of searching for solutions numerically on a

case-by-case basis as explained in Honoré and Weidner (2020), we propose a complementary

systematic algebraic procedure to recover the model’s valid moments that we outline in the

next paragraph3.

Methodology. We call a transition function associated to a transition probability

π
yt+1|ytt−(p−1)

t (Ai, Xi) any moment function ϕθ(Yi, Y
0
i , Xi) satisfying:

E
[
ϕθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi, Ai
]
= π

yt+1|ytt−(p−1)

t (Ai, Xi) (2)

In panels of sufficient length, transition functions happen to exist for certain transition

probabilities in several DFEL models of interest and are typically non-unique. This non-

uniqueness motivates a two-step approach to obtain valid moment functions fulfilling (1). In

Step 1), the researcher computes the model’s transition functions. Foreshadowing results

for the binary case with p lags (e.g AR(p) logit models), a minimum of T = p + 1 periods

will generally be required to obtain unique transition functions for a subset of transition

probabilities in period t = p. However, this alone does not yield moment equality restric-

tions on θ0, for which an additional period is necessary. With T ≥ p + 2, we explain how

to systematically construct distinct transition functions associated to the same subset of

transition probabilities across periods t ∈ {p+1, . . . , T −1}. The key ingredient is the use of

partial fraction decompositions for rational fractions tailored to the structure of logit tran-

sition probabilities (see Appendix Lemmas 6-7). This leads us to Step 2) where we simply

take differences of two transition functions associated to the same transition probability to

automatically obtain valid moment functions.

Intuitively, this two-step strategy emulates familiar fixed effects differencing schemes in

panel data models with strict exogeneity. That is finding two moment functions whose

conditional expectations given (Y 0
i , Xi, Ai) produce the same function of the fixed effects

h(Ai, Xi) and taking their difference. The relevant choices of h(Ai, Xi) are inherently model

specific but in binary logit models, any such function happens to be a linear combination

3We refer readers to Dobronyi et al. (2021) and Kitazawa (2022) for alternative algebraic approaches.
The first paper uses the full likelihood and focuses on the AR(1) and instances of the AR(2) model. The
second paper has a transformation approach adapted to the AR(1) model.
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of transition probabilities. This insight explains our particular focus on transition functions

and transition probabilities.

Notations. We reemphasize the use of the shorthand Zt
is = (Zit, Zit−1, . . . , Zis) to denote

the history of Zit between periods s and t. We let ∆ denote the first-differencing operator

so that ∆Zit = Zit −Zit−1 and make use of the notation Zits = Zit −Zis for s ̸= t to accom-

modate long differences. We use 1{.} for the indicator function; Im(f), ker(f), rank(f) to

denote the image, the nullspace and the rank of a linear map f .

3 The AR(1) logit model

We begin our analysis with the textbook AR(1) logit model with fixed effects

Yit = 1{γ0Yit−1 +X ′
itβ0 + Ai − ϵit ≥ 0}, t = 1, . . . , T (AR1)

Here, Y = {0, 1}, X ⊆ RKx , A = R, θ0 = (γ0, β
′
0) ∈ R × RKx , and Y 0

i = Yi0. The logistic

assumption on ϵit implies the transition probabilities

π
0|0
t (Ai, Xi) = P (Yit+1 = 0|Yit = 0, Xi, Ai) =

1

1 + eAi+X′
it+1β0

π
1|1
t (Ai, Xi) = P (Yit+1 = 1|Yit = 1, Xi, Ai) =

eγ0+X
′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

with π
1|0
t (Ai, Xi), π

0|1
t (Ai, Xi) redundant since π

k|l
t (Ai, Xi) = 1−πl|lt (Ai, Xi) for all (k, l) ∈ Y2.

3.1 The number of moment restrictions in the AR(1)

We start out by enumerating the moment restrictions implied by the model. This will provide

a means to assess the exhaustiveness of our two-step approach. To this end, let Ey0,x,T denote

the conditional expectation operator mapping any function of the outcome variable Yi to its

conditional expectation given Yi0 = y0, Xi = x and the fixed effect Ai, i.e

Ey0,x,T : RYT −→ RR

ϕ(.; y0, x) 7−→ E
[
ϕ(Yi, y0, x)|Yi0 = y0, Xi = x,Ai = .

]
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Ey0,x,T is one formulation of the parametric component of the model in that for any y ∈ YT ,

Ey0,x,T
[
1{. = y}

]
yields the conditional probability of observing history y for all possible

values of the fixed effect, i.e: Ey0,x,T
[
1{. = y}

]
= P (Yi = y|Yi0 = y0, Xi = x,Ai = .) where

P (Yi = y|Yi0 = y0, Xi = x,Ai = a) =
T∏
t=1

eyt(γ0yt−1+x′tβ0+a)

1+eγ0yt−1+x′tβ0+a
, ∀a ∈ R. We have the following

result,

Theorem 1. Consider model (AR1) with T ≥ 1, initial condition y0 ∈ Y and covariates

x ∈ X T . Suppose that for any t, s ∈ {1, . . . , T − 1} and (y, ỹ) ∈ Y2, γ0y + x′tβ0 ̸= γ0ỹ + x′sβ0

if t ̸= s or y ̸= ỹ. Then, the family Fy0,x,T =
{
1, π

y0|y0
0 (., x), (π

0|0
t (., x), π

1|1
t (., x))T−1

t=1

}
of size

2T forms a basis of Im(Ey0,x,T ) and dim
(
ker(Ey0,x,T )

)
= 2T − 2T .

Theorem 1 establishes that the linear span of transition probabilities provides a minimal

description of the parametric part of the model: 2T histories are possible but their conditional

probabilities can all be written with just 2T basis elements. This follows from the observation

that when the quantity γ0yt−1+x
′
tβ0 in each transition probability differ across time periods

4, the conditional probability of each history y ∈ YT is a ratio of polynomials in exp (a),

where the numerator has lower degree than the denominator, and the later is a product of

distinct irreducible terms. A sufficient condition for this is that γ0 ̸= 0 and that one regressor

is continuously distributed with non-zero slope. In turn, standard results on partial fraction

decompositions ensure that this ratio can be expressed as a unique linear combination of

transition probabilities. This implies Im(Ey0,x,T ) ⊆ Fy0,x,T . To establish the reverse inclusion,

we leverage upcoming results that prove that the transition probabilities live in Im(Ey0,x,T )

as expectations of transition functions.

Importantly, since ker(Ey0,x,T ) is the set of valid moment functions verifying equation (1),

Theorem 1 tells us that the AR(1) model features 2T − 2T linearly independent moment

restrictions in general. This is a consequence of the rank nullity theorem. The fact that

2T − 2T moment conditions are available for the AR(1) appeared initially as a conjecture

in Honoré and Weidner (2020) and was later established by Kruiniger (2020) and Dobronyi

4This condition may be violated if for example γ0 ̸= 0 but x′tβ0 = x′sβ0. However, if we let It = {s ̸= t :

x′tβ0 = x′sβ0}, one can show using similar arguments on rational fractions that
{
π
0|0
s (a, x), π

1|1
s (a, x)

}
s∈It

will

be replaced by
{
π
0|0
t (a, x)j , π

0|1
t (a, x)j

}|It|

j=2
in the family Fy0,x,T of Theorem 1. Since |Fy0,x,T | is unchanged,

the number of linearly independent moment functions is unchanged.
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et al. (2021) using different arguments from here. They did not emphasize the role of the

transition probabilities. Our ideas extend naturally to the case of arbitrary lags - since the

transition probabilities remain rational fractions - which was hitherto unresolved. We discuss

this extension in Subsection 4.1.

Remark 1 (Counting moments in logit models). Decomposing conditional probabilities of

choice histories into a basis can be a useful device to infer a lower bound on the number

of moment restrictions in logit models. Furthermore, if these basis elements are shown to

belong to the image of the conditional expectation operator, this lower bound equals the

exact number of moment restrictions.

• In the static panel logit model of Rasch (1960), γ0 = 0 and we have π
1|1
t (., x) =

1−π
0|0
t (., x). Thus, provided that x′tβ0 ̸= x′sβ0 for all t ̸= s, Fx,T =

{
1, (π

0|0
t (., x))T−1

t=0

}
spans the image of the conditional expectation operator. This implies at least 2T−(T+

1) moment restrictions. In fact, this is precisely the total number of moment restrictions

by Remark 2 which gives the transition functions associated to each element of Fx,T .

• In the Cox (1958) model, γ0 ̸= 0 but β0 = 0 and the transition probabilities are

π0|0(a) = 1
1+ea

and π1|1(a) = eγ0+a

1+eγ0+a (or equivalently π0|1(a) = 1
1+eγ0+a ). In this case,

the family Fy0,T =

{
1,
(
π0|0(.)j, π0|1(.)j

)T−1

j=1
, π0|y0(.)T

}
which consists of powers of the

time-invariant transition probabilities spans the image of the conditional expectation

operator. Since |Fy0,T | = 2T , the model produces at least 2T −2T linearly independent

moment restrictions.

Having clarified the total count of moment restrictions in the AR(1) logit model, we next

discuss how to construct them with our two-step procedure.

3.2 Construction of moment restrictions in the AR(1)

3.2.1 Intuition from the case with no regressors

We first explain our approach for the simple pure AR(1) model

Yit = 1{γ0Yit−1 + Ai − ϵit ≥ 0}, t = 1, . . . , T (AR1 pure)
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studied by Cox (1958), Chamberlain (1985) and Magnac (2000). These papers established

the identification of γ0 for T ≥ 3 via conditional likelihood based on the insight that

(Yi0,
∑T−1

t=1 Yit, YiT ) are sufficient statistics for the fixed effect. Our methodology is con-

ceptually different as we seek to directly construct moment functions verifying equation (1).

Here, the transition probabilities are time invariant and given by

πk|l(Ai) = P (Yit+1 = k|Yit = l, Ai) =
ek(γ0l+Ai)

1 + eγ0l+Ai
, ∀(l, k) ∈ Y

Step 1). We begin by deriving the transition functions for π0|0(Ai) and π1|1(Ai). A nat-

ural starting place is to investigate the case T = 2, i.e 2 periods of observations after

the initial condition. Recalling definition (2), we search for ϕ
0|0
θ (Yi2, Yi1, Yi0), respectively

ϕ
1|1
θ (Yi2, Yi1, Yi0), whose conditional expectation given (Yi0, Ai) yields π0|0(Ai), respectively

π1|1(Ai). For the purposes of illustration, let us derive ϕ
0|0
θ (Yi2, Yi1, Yi0) step by step. By

Bayes’s rule:

E
[
ϕ
0|0
θ (Yi2, Yi1, Yi0) | Yi0 = y0, Ai = a

]
=

1∑
y2=0

1∑
y1=0

P (Yi2 = y2|Yi1 = y1, Ai = a)P (Yi1 = y1|Yi0 = y0, Ai = a)ϕ
0|0
θ (y2, y1, y0)

=
eγ0y0+a

1 + eγ0y0+a

(
eγ0+a

1 + eγ0+a
ϕ
0|0
θ (1, 1, y0) +

1

1 + eγ0+a
ϕ
0|0
θ (0, 1, y0)

)
+

1

1 + eγ0y0+a

(
ea

1 + ea
ϕ
0|0
θ (1, 0, y0) +

1

1 + ea
ϕ
0|0
θ (0, 0, y0)

)
where the second equality uses the logistic hypothesis. By quick inspection, we see that the

terms in the first parenthesis have (1 + eγ0+a) in their denominator unlike π0|0(Ai). Because

−e−γ0 is not a pole of π0|0(Ai)
5, we conclude that ϕ

0|0
θ (1, 1, y0) = ϕ

0|0
θ (0, 1, y0) = 0. This first

deduction leaves us with

E
[
ϕ
0|0
θ (Yi2, Yi1, Yi0) | Yi0 = y0, Ai = a

]
=

1

1 + eγ0y0+a

(
ea

1 + ea
ϕ
0|0
θ (1, 0, y0) +

1

1 + ea
ϕ
0|0
θ (0, 0, y0)

)
Now, since π0|0(Ai) does not depend on y0, we must cancel the denominator (1 + eγ0y0+a).

To achieve this, we must set: ϕ
0|0
θ (1, 0, y0) = C0e

γy0 , ϕ
0|0
θ (0, 0, y0) = C0 for some constant

5A pole of a rational function is a root of its denominator. Formally, we are substituting u = ea and we
are extending π0|0(u) to the real line.
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C0 ∈ R \ {0}. Then,

E
[
ϕ
0|0
θ0
(Yi2, Yi1, Yi0)|Yi0 = y0, Ai = a

]
= C0

1

1 + ea

and C0 = 1 is the appropriate normalization to obtain the desired transition function. Of

course, the exact same logic applies for ϕ
1|1
θ0
(Yi2, Yi1, Yi0) and π

1|1(Ai).

This short calculation reveals a useful principle for the general case T ≥ 2. We learned

that we can search for functions of three consecutive outcomes ϕ
k|k
θ (Yit+1, Yit, Yit−1) such that:

ϕ
k|k
θ (Yit+1, Yit, Yit−1) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1) | Yi0, Y t−1
i1 , Ai

]
= πk|k(Ai)

The first restriction is a functional form that eliminates terms with inadequate poles after

taking expectations. The second restriction is a normalization condition to match the desired

transition probability. Following this argument, we arrive at the expressions in Lemma 1.

Lemma 1. In model (AR1 pure) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1) = (1− Yit)e

γYit+1Yit−1

ϕ
1|1
θ (Yit+1, Yit, Yit−1) = Yite

γ(1−Yit+1)(1−Yit−1)

Then:

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1)|Yi0, Y t−1

i1 , Ai

]
= π0|0(Ai) =

1

1 + eAi

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1)|Yi0, Y t−1

i1 , Ai

]
= π1|1(Ai) =

eγ0+Ai

1 + eγ0+Ai

Step 2). The second step in the agenda is the construction of valid moment functions.

By virtue of the law of iterated expectations and since the transition probabilities of the

model are time-invariant, a natural way to achieve this is to consider the pairwise difference of

ϕ
k|k
θ (Yit+1, Yit, Yit−1) and ϕ

k|k
θ (Yis+1, Yis, Yis−1) for any feasible s ̸= t. Nevertheless, alternative

differencing schemes are possible and we formally discuss one that can further accommodate

arbitrary regressors in Proposition 1 below.
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3.2.2 The general case with regressors

We move on to the general AR(1) logit model characterized by equation (AR1).

Step 1). Since the transition probabilities π
0|0
t (Ai, Xi), π

1|1
t (Ai, Xi) retain the same func-

tional form as in the simple pure model, the same calculations described above lead to the

transition functions in Lemma 2. The only predictable change is the appearance of an extra

term +/−∆X ′
it+1β which accounts for the presence of covariates in the model.

Lemma 2. In model (AR1) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

Yit+1(γYit−1−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+∆X′
it+1β)

Then:

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi) =

1

1 + eAi+X′
it+1β0

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi) =

eγ0+X
′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

At this point, it is important to highlight that unlike previously, the transition probabilities

are covariate-dependent. The upshot is that the naive difference of ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)

and ϕ
k|k
θ (Yis+1, Yis, Yis−1, Xi) for s ̸= t no longer leads to valid moment functions in general.

Indeed, while Lemma 2 ensures that

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)− ϕ

k|k
θ (Yis+1, Yis, Yis−1, Xi)|Yi0, Xi, Ai

]
= π

k|k
t (Ai, Xi)− πk|ks (Ai, Xi)

clearly, π
k|k
t (Ai, Xi) − π

k|k
s (Ai, Xi) ̸= 0 when X ′

it+1β0 ̸= X ′
is+1β0

6. Thus, a different logic is

required in the presence of explanatory variables other than a first order lag. Our proposal is

to construct new transition functions that we denote ζθ, distinct from ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)

but mapping to the same transition probabilities π
k|k
t (Ai, Xi). Their construction displayed

in Lemma 3 is achievable as soon as T ≥ 3 and is valid for any type of covariates. It heavily

relies on two ingredients: i) the rational fraction structure of the transition probabilities with

6A matching strategy a la Honoré and Kyriazidou (2000) may still be applicable if Xit+1 = Xis+1.
However, this is known to lead to estimators converging at rate less than

√
N for continuous covariates and

it rules out certain regressors such as time dummies and time trends.
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respect to exp(Ai), and ii) suitable partial fraction decompositions described in Appendix

Lemma 6. The latter relate to the hyperbolic transformations ideas of Kitazawa (2022). In

the sequel, we shall see that thoses insights carry over to other DFEL models, including

AR(p) logit models for arbitrary p ≥ 1.

Lemma 3. In model (AR1) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let:

µs(θ) = γYis−1 +X ′
isβ

κ
0|0
t (θ) = X ′

it+1β, κ
1|1
t (θ) = γ +X ′

it+1β

ω
0|0
t,s (θ) = 1− e(κ

0|0
t (θ)−µs(θ)), ω

1|1
t,s (θ) = 1− e−(κ

1|1
t (θ)−µs(θ))

and define the moment functions:

ζ
0|0
θ (Y t+1

it−1, Y
s
is−1, Xi) = (1− Yis) + ω

0|0
t,s (θ)Yisϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s
is−1, Xi) = Yis + ω

1|1
t,s (θ)(1− Yis)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

Additionally, if T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying

T − 1 ≥ t > s1 > . . . > sJ ≥ 1, define analogously

ζ
0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = (1− YisJ ) + ω

0|0
t,sJ

(θ)YisJ ζ
0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = YisJ + ω

1|1
t,sJ

(θ)(1− YisJ )ζ
1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

Then for all k ∈ Y

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi),

Step 2). Provided T ≥ 3, the difference between any transition functions associated to

the same transition probabilities in periods t ∈ {2, . . . , T − 1} constitutes a valid candidate

for (1) by iterated expectations. Proposition 1 gives a particular family of valid moment

functions that we have found to be complete.

Proposition 1. In model (AR1), for all k ∈ Y,

13



if T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1 , let

ψ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi),

if T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying T − 1 ≥ t > s1 >

. . . > sJ ≥ 1, let

ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi),

Then,

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= 0

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= 0

Indeed, note first that this family has cardinality 2T − 2T which by Theorem 1 is precisely

the number of linearly independent moment conditions available for the AR(1). To see this,

notice that for fixed (k, Yi0) ∈ Y2, and a given time period t ∈ {2, . . . , T − 1}, Proposition

1 gives a total of:
∑t−1

l=1

(
t−1
l

)
= 2t−1 − 1 valid moment functions. Indeed, we get

(
t−1
1

)
possibilities from choosing any s in {1, . . . , t − 1} to form ψ

k|k
θ (Y t+1

it−1, Y
s
is−1, Xi). To that,

we must add another
∑t−1

l=2

(
t−1
l

)
possibilities from choosing all feasible sequences sJ1 with

t − 1 ≥ s1 > s2 > . . . > sJ ≥ 1 to form ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi). Summing over

t = 2, . . . , T − 1 and multiplying by 2 to account for the two possible values for k delivers

the result: 2 ×
∑T−1

t=2

∑t−1
l=1

(
t−1
l

)
= 2 ×

∑T−1
t=2 (2

t−1 − 1) = 2T − 2T . Second, the family

appears linearly independent. It is readily verified for T = 3 since the two valid moment

functions produced depend on distinct sets of choice histories. Unfortunately, this argument

does not carry over to longer panels, but we verified numerically that the linear independence

property of this family continues to hold for several different values of T ≥ 4. This evidence

suggests that our two-step approach delivers all the moment equality restrictions available

in the AR(1) logit model.7

Remark 2 (Static logit). If γ0 = 0, model (AR1) specializes to the static panel logit model

7This is not all the identifying content of the AR(1) specification since we know from Dobronyi et al.
(2021) that the model also implies moment inequality conditions.
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of Rasch (1960). For that case, Lemma 2 gives two moment functions for T = 2,

ϕ
0|0
θ (Yi2, Yi1, Xi) = (1− Yi1)e

−Yi2∆X′
2β

ϕ
1|1
θ (Yi2, Yi1, Xi) = Yi1e

(1−Yi2)∆X′
i2β

such that E
[
ϕ
0|0
θ0
(Y 2

i1, , Xi)|Xi, Ai

]
= 1

1+eX
′
i2

β0+Ai
and E

[
ϕ
1|1
θ0
(Y 2

i1, Xi)|Xi, Ai

]
= eX

′
i2β0+Ai

1+eX
′
i2

β0+Ai
. It

follows that a valid moment function with two periods of observation is

ψθ(Yi2, Yi1, Xi) = ϕ
1|1
θ (Yi2, Yi1, Xi)− (1− ϕ

0|0
θ (Yi2, Yi1, Xi))

= (1− e−∆X′
i2β)

(
Yi1(1− Yi2)e

∆X′
i2β − (1− Yi1)Yi2

)
which is proportional to the score of the conditional likelihood based on the sufficient statistic

Yi1 + Yi2 (Rasch (1960), Andersen (1970), Chamberlain (1980)).

3.3 Semiparametric efficiency bound for the AR(1)

Honoré and Weidner (2020) gave sufficient conditions to identify θ0 = (γ0, β
′
0)

′ in the AR(1)

model with T ≥ 3. Two natural follow-up questions arise: i) how accurately can θ0 be

estimated in that case, i.e what is the semiparametric efficiency bound, and ii) which esti-

mator, if any, attains it. This section addresses these questions which to our knowledge have

remained unresolved, particularly in the case where covariates are present.

No covariates with T = 3. In a corrigendum to Hahn (2001), Gu et al. (2023) confirmed

that the conditional likelihood estimator is semiparametrically efficient for T = 3 in the

pure AR(1) model. This result, when viewed through our moment-based framework, reveals

useful insights. Specifically, with some algebra, one can show that the conditional score for

the state dependence parameter θ0 ≡ γ0 is given by

1

(1 + eγ0)(e−γ0 − 1)

(
ψ

0|0
θ0
(Yi3, Yi2, Yi1, Yi0) + ψ

1|1
θ0
(Yi3, Yi2, Yi1, Yi0)

)
where ψ

0|0
θ (Yi3, Yi2, Yi1, Yi0) and ψ

1|1
θ (Yi3, Yi2, Yi1, Yi0) are the moment functions of our Propo-

sition 1 for the no-regressor case. This expression implies an alternative interpretation of

the optimal estimator as the efficient GMM estimator for E
[
ψθ0(Yi3, Yi2, Yi1, Yi0)|Yi0

]
= 0,

where ψθ(Yi3, Yi2, Yi1, Yi0) = (ψθ(Yi3, Yi2, Yi1, Yi0), ψθ(Yi3, Yi2, Yi1, Yi0))
′.
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The case with covariates and arbitrary T. The pure AR(1) model insights nat-

urally suggest that the efficient GMM estimator for the conditional moment restriction

E
[
ψθ(Yi0, Yi, Xi)|Yi0, Xi

]
= 0 could achieve semiparametric efficiency. Here, ψθ(Yi0, Yi, Xi)

represents the (2T − 2T )-vector gathering all the valid moment functions of Proposition 18.

We verify this conjecture in Theorem 2 below. To set out the result, assume θ0 is identi-

fied from E
[
ψθ0(Yi0, Yi, Xi)|Yi0, Xi

]
= 0 and let D(Yi0, Xi) = E

[
∂ψθ0

(Yi0,Yi,Xi)

∂θ′
|Yi0, Xi

]
and

Σ(Yi0, Xi) = E
[
ψθ0(Yi0, Yi, Xi)ψθ0(Yi0, Yi, Xi)

′|Yi0, Xi

]
. Then we have the following result:

Theorem 2. Consider model (AR1) with T ≥ 3 and suppose i) E [XiX
′
i] < ∞, ii)

the support Aq ⊆ R of the distribution of heterogeneity q(.|Yi0, Xi) contains an accu-

mulation point, ii) the matrix E
[
D(Yi0, Xi)

′Σ(Yi0, Xi)
−1D(Yi0, Xi)

]
exists and is nonsin-

gular. Then, the semiparametric variance bound for θ0 is finite and given by V0 =

E[D(Yi0, Xi)
′Σ(Yi0, Xi)

−1D(Yi0, Xi)]
−1.

Assumption i) is a standard square integrability condition for covariates. Assumption ii)

is a richness condition weaker than requiring Aq = R but sufficient to ensure that no ad-

ditional information can come from exploiting the support of heterogeneity (see Argañaraz

and Escanciano (2023)). Assumption iii) is a local identification condition analogous to

Davezies et al. (2023) in the context of static models. Theorem 2 confirms that opti-

mal GMM estimation of θ0 would utilize the efficient moment function ψeffθ (Yi0, Yi, Xi) =

D(Yi0, Xi)
′Σ(Yi0, Xi)

−1ψθ(Yi0, Yi, Xi). Its proof involves verifying the conditions for an ap-

plication of Theorem 3.2 in Newey (1990) and hinges on two key properties. First, we show

that the orthocomplement of the nonparametric tanget set - the space onto which the score

for θ is projected to determine the element characterizing the variance bound, i.e the effi-

cient score - is the set of valid moment conditions verifying (1) (up to terms in (Yi0, Xi)).

Second, we leverage the fact that the AR(1) only admits a known finite number of linearly

independent moment restrictions by Theorem 1. Together, these features imply that the

efficient score is the conditional linear predictor of the score for θ on ψθ(Yi0, Yi, Xi) given

(Yi0, Xi), aligning with ψeffθ (Yi0, Yi, Xi). We note that these properties are not unique to

AR(1) logit model; they hold, for instance, in AR(p) logit models with p > 1 (see Theorem

8More generally, any family of 2T − 2T linearly independent valid moment functions could be used.
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3). This suggests that Theorem 2 could, in principle, be extended to other DFEL models

where θ0 is identified by the available moment conditions.

4 The AR(p) logit model with p > 1

Allowing for higher-order lags is often desirable in empirical work to model persistent stochas-

tic processes and improve model fit (e.g, Magnac (2000) on labour market histories, Chay

et al. (1999) and Card and Hyslop (2005) on welfare recipiency). In this section, we charac-

terize the form of the moment restrictions available in AR(p) logit models

Yit = 1

{
p∑
r=1

γ0rYit−r +X ′
itβ0 + Ai − ϵit ≥ 0

}
, t = 1, . . . , T (ARp)

where the lag order p ≥ 1 can be arbitrary. This generalization has not been thoroughly

addressed in the literature 9 and allows to test lag misspecification given enough time periods.

Here, Y 0
i = (Yi−(p−1), . . . , Yi−1, Yi0)

′ ∈ Yp, X ⊆ RKx , θ0 = (γ′0, β
′
0)

′ ∈ Rp × RKx , and A = R.

The logistic assumption on ϵit implies 2p non-redundant transition probabilities given by

π
k|lp1
t (Ai, Xi) = P (Yit+1 = k|Yit = l1, . . . , Yit−(p−1) = lp, Xi, Ai) =

ek(
∑p

r=1 γ0rlr+X
′
it+1β0+Ai)

1 + e
∑p

r=1 γ0rlr+X
′
it+1β0+Ai

for (k, l1, . . . , lp) ∈ Yp+1.

4.1 The number of moment restrictions when p ≥ 1

Based on simulation evidence, Honoré and Weidner (2020) conjectured that AR(p) models

possess 2T − (T + p − 1)2p linearly independent moment conditions in panels of sufficient

length. We prove this claim in Theorem 3 and establish that no moment restrictions for

the common parameters exist when T ≤ p+ 1. To introduce the result formally, it is again

convenient to consider the conditional expectation operator E (p)

y0,x,T describing the model, i.e

E (p)

y0,x,T

[
1{. = y}

]
= P (Yi = y|Y 0

i = y0, Xi = x,Ai = .) = a 7→
T∏
t=1

eyt(
∑p

r=1 γ0ryt−r+x′tβ0+a)

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

9Using Mathematica, Honoré and Weidner (2020) present moment functions for the AR(2) model up to
T = 4 and the AR(3) model with T = 5 but no results are offered beyond these special cases.
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Then the following result holds:

Theorem 3. Consider model (ARp) with T ≥ 1, initial condition y0 ∈ Yp and covariates

x ∈ X T . Suppose that for any t, s ∈ {1, . . . , T − 1} and y, ỹ ∈ Yp, γ′0y + x′tβ0 ̸= γ′0ỹ + x′sβ0

if t ̸= s or y ̸= ỹ. Then, the family

F (p)

y0,x,T =

1, π
y0|y0
0 (., x),

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1


forms a basis of Im

(
E (p)

y0,x,T

)
and therefore

1. If T ≤ p+ 1, rank
(
E (p)

y0,x,T

)
= 2T and dim

(
ker
(
E (p)

y0,x,T

))
= 0

2. If T ≥ p+2, rank
(
E (p)

y0,x,T

)
= (T−p+1)2p and dim

(
ker
(
E (p)

y0,x,T

))
= 2T−(T−p+1)2p

Theorem 3 generalizes Theorem 1, establishing that the conditional probabilities of all choice

histories are spanned by the transition probabilities, no matter the lag order. This result

hinges again on the rational fraction structure of logit probabilities and on the fact that the

transition probabilities of AR(p) models admit transition functions, a property set out in the

following section. One important practical implication is that fitting an AR(p) demands at

least 2(p−1) additional observations relative to an AR(1) (count p initial conditions followed

by T = p+ 2 waves of data against 4 total periods needed for an AR(1)).

Remark 3 (Beyond Logit). Theorem 1 and 3 could, in principle, be suitably extended to

other distributions for ϵit beyond the logistic case, provided they induce a rational fraction

structure for the transition probabilities. Examples include mixtures of logistic distributions

(e.g Honoré and Weidner (2020)), and generalized logistic distributions (e.g Davezies et al.

(2023)). A rational fraction structure prevents the rank of the conditional expectation opera-

tor from growing as quickly as the number of choice histories, ensuring thereby the existence

of moment conditions for sufficiently large T .

4.2 Construction of transition functions with p > 1

Having clarified that T = p+2 is the minimum number of periods required for the existence

of identifying moments, we are now ready to address the issue of their construction. The
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blueprint generalizes that of the AR(1) model and can be summarized as follows:

1. Step 1)

(a) Start by obtaining analytical expressions of the unique transition functions for the

transition probability in period t = p when T = p + 1 10. Shift these expressions

by one period, two periods, three periods etc to get a set of transition functions

for period t ∈ {p+ 1, . . . , T − 1} when T ≥ p+ 2.

(b) Apply partial fraction decompositions to the expressions obtained in (a) for t ∈

{p + 1, . . . , T − 1} to generate other transition functions mapping to the same

transition probabilities.

2. Step 2). Take adequate differences of transition functions associated to the same

transition probability in periods t ∈ {p + 1, . . . , T − 1} to obtain valid moments that

are linearly independent.

Step 1) (a) is akin to how we started by getting closed form expressions for the transition

functions in period t = 1 for T = 2 in the one lag case and then deducted a general principle

for t ≥ 2 (see Section 3.2.1). From a technical perspective, this is the only part of the two-step

procedure that differs from the baseline AR(1). Indeed, Step 2) is fundamentally identical

and Step 1) (b) is also unchanged for the simple reason that the transition probabilities

keep the same functional form as before. That is, a rational fraction in exp(Ai). Hence, the

same partial fraction expansions apply. In light of those close similarities with the AR(1)

and in order to focus on the primary issues, we defer a discussion of Step 1)(b) and Step

2) to the Online Appendix.

Theorem 4 provides the algorithm to compute the transition functions for Step 1) (a)

for arbitrary lag order greater than one. It is based on the insight that we can leverage

the transition functions of an AR(p− 1) and partial fraction decompositions to generate the

transition functions of an AR(p). A simple example is helpful to illustrate the idea. Consider

10The fact that the transition functions in period t = p are unique when T = p + 1 is a direct corollary
of Theorem 3. Otherwise, the difference of two distinct transition functions mapping to the same transition
probability would yield a valid moment which is a contradiction.
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an AR(2) with T = 3 (i.e 5 observations in total) and suppose that we seek a transition

function associated to, say, the transition probability π
0|0,1
2 (Ai, Xi) =

(
1 + eγ02+X

′
i3β0+Ai

)−1

.

The first ingredient of the theorem is to view the AR(2) model as an AR(1) model where

we treat the second order lag as an additional strictly exogenous regressor. This change

of perspective is advantageous since we already know how to deal with the single lag case.

In particular, Lemma 2 readily gives the transition function ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi) for the

transition probability π
0|0,Yi1
2 (Ai, Xi) = P (Yi3 = 0|Yi2 = 0, Yi1, Xi, Ai) in the sense that it

verifies:

E
[
ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)|Y 0

i , Yi1, Xi, Ai

]
= π

0|0,Yi1
2 (Ai, Xi)

This is an intermediate stage since ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi) does not quite map to the target

of interest; π
0|0,Yi1
2 (Ai, Xi) depends on the random variable Yi1 unlike π

0|0,1
2 (Ai, Xi). To make

further progress, one would intuitively need to “set” Yi1 to unity to make the two transition

probabilities coincide. We operationalize this idea by interacting ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)

and Yi1 to achieve the desired effect in expectation:

E
[
Yi1ϕ

0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)|Y 0

i , Xi, Ai

]
= E

[
Yi1π

0|0,1
2 (Ai, Xi)|Y 0

i , Xi, Ai

]
=

1

1 + eγ02+X
′
i3β+Ai

eγ01Yi0+γ02Yi−1+X
′
i1β0+Ai

1 + eγ01Yi0+γ02Yi−1+X′
i1β0+Ai

Here, the first equality follows from the law of iterated expectations. Then, the second

ingredient of the theorem is a partial fraction expansion (Appendix Lemma 6) to turn this

product of logistic indices into π
0|0,1
2 (Ai, Xi). This last operation is analogous to how we

constructed sequences of transition functions in the AR(1) model. It ultimately tells us that

the solution is a weighted sum of (1− Yi1) and Yi1ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi). Theorem 4 turns

this procedure into a recursive algorithm that computes the transition functions for any lag

order p > 1.

Theorem 4. In model (ARp) with T ≥ p+ 1, for all t ∈ {p, . . . , T − 1} and yp1 ∈ Yp , let

k
y1|yp1
t (θ) =

p∑
r=1

γryr +X ′
it+1β
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k
y1|yk+1

1
t (θ) =

k+1∑
r=1

γryr +

p∑
r=k+2

γrYit−(r−1) +X ′
it+1β, k = 1, . . . , p− 2, if p > 2

ut−k(θ) =

p∑
r=1

γrYit−(r+k) +X ′
it−kβ, k = 1, . . . , p− 1

w
y1|yk+1

1
t (θ) =

[
1− e(k

y1|y
k+1
1

t (θ)−ut−k(θ))

]yk+1
[
1− e−(k

y1|y
k+1
1

t (θ)−ut−k(θ))

]1−yk+1

, k = 1, . . . , p− 1

and

ϕ
y1|yk+1

1
θ (Yit+1, Yit, Y

t−1
it−(p+k), Xi) =[

(1− Yit−k) + w
y1|yk+1

1
t (θ)ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)Yit−k

](1−y1)yk+1

×[
1− Yit−k − w

y1|yk+1
1

t (θ)
(
1− ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
(1− Yit−k)

](1−y1)(1−yk+1)

×[
Yit−k + w

y1|yk+1
1

t (θ)ϕ
y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)(1− Yit−k)

]y1(1−yk+1)

×[
1− (1− Yit−k)− w

y1|yk+1
1

t (θ)
(
1− ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
Yit−k

]y1yk+1

, k = 1, . . . , p− 1

where

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

Then,

E
[
ϕ
y1|yp1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−1), Xi) |Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

and for k = 0, . . . , p− 2

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi) |Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

The remaining steps to complete the construction of valid moment functions are described

at length in the Online Appendix. The end product is a family of (numerically) linearly

independent moment functions of size 2T − (T + 1− p)2p. By Theorem 3, this implies that

our two-step approach recovers all moment equality conditions in the model. We discuss

21



how to potentially exploit these moment functions to identify θ0 in the Online Appendix.

Remark 4 (Extensions). While the exposition emphasized model (ARp),

the methodology applies more broadly to models of the form Yit =

1
{
g(Yit−1, . . . , Yit−p, Xit, θ0) + Ai − ϵit ≥ 0

}
, where the lag order p > 1 is known and

g(.) is known up to θ0. The crucial feature is the additive separability of the fixed effect.

Remark 5. (Average Marginal Effects) In applied work, there is often interest in certain

functionals of unobserved heterogeneity rather than on the value of the model parameters

per se. Average marginal effects (AMEs) which capture mean response to a counterfactual

change in past outcomes are one such example, and can be directly obtained as expectations

of our transition functions. To illustrate, consider the baseline AR(1) model with discrete

covariates Xit. We can define the average transition probability from state l to state k in

period t for a subpopulation of individuals with covariate xt+1
1 = (x1, . . . , xt+1) and initial

condition y0 as

Π
k|l
t (y0, x

t+1
1 ) = E

πk|lt (Xit+1, Ai)︸ ︷︷ ︸
≡πk|l

t (Xi,Ai)

|Yi0 = y0, X
t+1
i1 = xt+1

1

 =

∫
π
k|l
t (xt+1, a)q(a|y0, xt+1

1 )da

where q(.|y0, xt+1
1 ) denotes the conditional density of the fixed effect given (y0, x

t+1
1 ). The

AME is defined as the following contrast of average transition probabilities:

AMEt(y0, x
t+1
1 ) = Π

1|1
t (y0, x

t+1
1 )− Π

1|0
t (y0, x

t+1
1 ) = Π

1|1
t (y0, x

t+1
1 )− (1− Π

0|0
t (y0, x

t+1
1 ))

It is interpreted as the population average causal effect on Yit+1 of a change from 0 to 1

of Yit given (y0, x
t+1
1 ). By Lemma 2 and the law of iterated expectations, we have that for

T ≥ 2 and t ≥ 1: Π
k|k
t (y0, x

t+1
1 ) = E

[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi) |Yi0 = y0, X
t+1
i1 = xt+1

1

]
, k ∈ Y ,

implying that AMEt(y0, x
t+1
1 ) is identified so long as θ0 is identified. A sufficient condition

for that is T ≥ 3 and Xi3 − Xi2 having support in a neighborhood of zero (Honoré and

Kyriazidou (2000)). Aguirregabiria and Carro (2021) were the first to point out the identifi-

cation of AMEs in the AR(1) model. Theorem 4 shows that our transition functions can be

leveraged more broadly to recover AMEs in AR(p) logit models with p > 1. Naturally, this

insight extends to any average effect whose integrand can be expressed as a linear combi-
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nation of transition probabilities. This includes, for example, “average survivor functions”,

representing counterfactual probabilities of surviving s consecutive periods in the same state.

5 Moment restrictions for the VAR(1) logit model

We now turn our attention to multi-dimensional fixed effects models, focusing in this section

on the VAR(1) logit used in our empirical application. Readers will find the proofs of all

claims in this section and analogous results for the dynamic multinomial logit model in the

Online Appendix.

Let Yit = (Y1,it, . . . , YM,it)
′ ∈ Y = {0, 1}M denote the outcome vector in period t with

M ≥ 2. Let Xit = (X ′
1,it, . . . , X

′
M,it)

′ ∈ X ⊆ RK1 × . . .×RKM denote the vector of exogenous

covariates in period t and Ai = (A1,i, . . . , AM,i)
′ ∈ A = RM the vector of fixed effects. The

VAR(1) logit model is described by:

Ym,it = 1


M∑
j=1

γ0mjYj,it−1 +X ′
m,itβ0m + Am,i − ϵm,it ≥ 0

 (VAR1)

m = 1, . . . ,M, t = 1, . . . , T . It represents a natural extension of the baseline AR(1) logit

model for multivariate outcomes and has been applied to study the relationship between

sickness and unemployment (Narendranthan et al. (1985)), the progression from softer drug

use to harder drug use among teenagers (Deza (2015)), transitivity in networks (Graham

(2013), Graham (2016)) and more recently the employment of couples (Honoré et al. (2022)).

The initial condition is given by Yi0 = (Y1,i0, . . . , YM,i0)
′ ∈ Y , and the logistic assumption

induces the transition probabilities:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, Xi, Ai) =

M∏
m=1

ekm(
∑M

j=1 γ0mj lj+X
′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mj lj+X′
m,it+1β0m+Am,i

for all (k, l) ∈ Y2. Honoré and Kyriazidou (2019) studied the bivariate case and showed that

θ0 can be identified by a conditional likelihood approach if T ≥ 3 and the regressors do not

vary over the last two periods. Similarly to the AR(1) case, the alternative construction for

identifying moments below relaxes these restrictions on the covariates, thus allowing for the

inclusion of time effects and estimation of common parameters at
√
N -rate.
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Step 1) in the VAR(1) logit model has a nuance relative to its univariate counterpart:

according to our calculations, the only transition functions that seem to exist are those

associated to π
k|k
t (Ai, Xi), for k ∈ Y , i.e the probabilities of remaining in the same state.

The expressions of a first set of transition functions, available from T = 2, are presented in

Lemma 4. They can easily be derived by applying the reasoning outlined in subsection 3.2.1.

Lemma 4. In model (VAR1) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e

∑M
m=1(Ym,it+1−km)(

∑M
j=1 γmj(Yj,it−1−kj)−∆X′

m,it+1βm)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi) =

M∏
m=1

ekm(
∑M

j=1 γ0mjkj+X
′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mjkj+X′
m,it+1β0m+Am,i

Next, we can appeal to the second partial fraction decomposition formula in Appendix

Lemma 7 to guide the construction of another set of transition functions when T ≥ 3.

The idea is as usual to utilize the (multivariate) rational fraction structure of the transition

probabilities. As is clear from Lemma 5, the resulting transition functions are multivariate

analogs of those presented in Lemma 3 for the AR(1) model.

Lemma 5. In model (VAR1) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for all

m ∈ {1, . . . ,M} and (k, l) ∈ Y2: µm,s(θ) =
∑M

j=1 γmjYj,is−1 +X ′
m,isβm,

κ
k|k
m,t(θ) =

∑M
j=1 γmjkj +X ′

m,it+1βm, ω
k|k
t,s,l(θ) = 1 − e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]
and define the

moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)

Additionally, if T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying

T − 1 ≥ t > s1 > . . . > sJ ≥ 1, define analogously

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}

+
∑

l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)
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Then

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

For Step 2), a family of linearly independent valid moment functions is readily available

by adequately repurposing the statement of Proposition 1 to the VAR(1) case, i.e by updating

the expressions of ϕ
k|k
θ (.) and ζ

k|k
θ (.) according to Lemmas 4-5. To conserve on space and

avoid repetition, we leave this simple exercise to the reader.

Remark 6 (Non-exhaustiveness). Although it can be verified numerically that, for T = 3,

our two-step strategy based on transition functions accounts for all moment restrictions

in both the VAR(1) specification and the dynamic multinomial logit model (see Online

Appendix), it no longer holds for T ≥ 4. One can show that there exists functions of the fixed

effects beyond linear combinations of transition probabilities that we can difference out using

a broader class of “generalized transition functions”. Importantly, the resulting moment

conditions contain additional information on θ0 unlike in the binary case. Characterizing

the complete family of moment conditions is a complex problem that we address for the

dynamic panel multinomial logit model in Dano et al. (2025)

6 Empirical Illustration

In this section, we apply our methodology to analyze the dynamics of drug consumption

among young individuals in the United States. The substantive question is whether the

observed persistence in drug use and the progression from soft to hard drugs among youth,

as documented in studies such as Deza (2015) 11, stem from causal state dependence (within

and between drugs) or from latent traits predisposing individuals to illicit substance use.

To investigate these issues, we employ the the National Longitudinal Survey of Youth

11To fix ideas, in the NLSY97 dataset, the empirical probability of consuming a substance in year t + 1
conditional on consuming it in year t averaged over t = 2001, 2002, 2003 is: 0.82 for alcohol, 0.6 for marijuana,
0.4 for hard drugs. Likewise, the average empirical probability of consuming hards drugs in t+1 conditional
on consuming marijuana in t over the same periods is approximately 0.16. In contrast, the average empirical
probability of consuming hards drugs in t+ 1 conditional on not consuming marijuana in t is only 0.02.
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1997 (NLSY97) which is a panel dataset of 8984 individuals surveyed on a diverse range

of subjects, including drug-related matters from 1997 to 2021 12. We concentrate on a

subsample of four waves, spanning from 2001 to 2004. This subsample provides insight

into the behavior of young people between the age of 16 and 22 in 2001 to 19 and 25 in

2004. We examine the statistical association between three outcome variables, namely the

consumption of alcohol, marijuana and hard drugs, derived from respondents answers’ during

annual interviews. Upon retaining those providing answers in all four waves, our sample

consists of N = 6461 individuals. In the spirit of Deza (2015), we model the relationship

between the consumption of each substance as a trivariate VAR(1) logit model:

Ym,it = 1


3∑
j=1

γ0mjYj,it−1 + β0mageit + δ0mcollegeit + Am,i − ϵm,it ≥ 0


m ∈ {1, 2, 3} (1=“alcohol”, 2=“marijuana”, 3=“hard drugs”), t = 1, 2, 3 where t = 0

corresponds to the year 2001. The state-dependence coefficients γ0mm (within) and γ0mj,m ̸=

j (between) are the main coefficients of interest in the 15-dimensional vector of common

parameters θ0. We are particularly concerned about the sign and the statistical significance

of γ032, i.e the so-called “stepping-stone” effect of marijuana on hard drugs. The covariate

ageit denotes the age of respondent i at time t, and collegeit is a dummy variable indicating

enrollment in a college degree. It captures the possibility that college represents a drug-

friendly environment13. Deza (2015) parameterizes both the latent permanent heterogeneity

Ai and the initial condition Yi0 to estimate the model by maximum likelihood. We leave

these components unrestricted and exploit the valid moment functions presented in Section

5. We specifically use six of the eight valid moment functions available: ψ
k|k
θ (Y 3

i1, Y
1
i0, Xi)

for k ∈ {(0, 0, 0), (0, 1, 0), (1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)}. The other two corresponding

to states k ∈ {(0, 0, 1), (0, 1, 1)} are null for over 99.5% of our sample and were dropped to

12The views expressed here are those of the author and do not reflect the views of the Bureau of Labor
Statistics (BLS).

13An earlier version of this paper examined a similar model, replacing college enrollment with the ratio
of state-level admissions to treatment centers for drug m in state i and year t to the national counterpart
in the same year, following Deza (2015). The results, comparable to those in Tables 1, showed statistically
insignificant effects for these alternative regressors. Moreover, constructing these regressors required access
to restricted BLS data, which complicated the analysis and limited replicability without providing additional
insights. These challenges motivated the adoption of the slightly different specification considered here, which
relies on publicly available data.
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mitigate noise in estimation. Next, we select a constant, the initial condition Y 0
i , ageit and

collegeit in all time periods to form the 60× 1 moment vector

mθ(Yi, Y
0
i , Xi) =



ψ
(0,0,0)|(0,0,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(0,1,0)|(0,1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1,1)|(1,1,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1,0)|(1,1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0,1)|(1,0,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0,0)|(1,0,0)
θ (Y 3

i1, Y
1
i0, Xi)


⊗


1

Y 0′
i

age3
′
i1

college3
′

1,i1



With mθ(Yi, Y
0
i , Xi) in hand, and given the number of overidentifying restrictions, we then

consider the empirical likelihood (EL) estimator θ̂ solution to

max
θ,π

N∑
i=1

lnπi subject to
N∑
i=1

πi = 1,
N∑
i=1

πimθ(Yi, Y
0
i , Xi) = 0

(Qin and Lawless (1994)), motivated by much work documenting the better small sam-

ple properties of EL relative to GMM (e.g Imbens (1997) in a panel context). Notably,

Newey and Smith (2004) showed that EL has relatively low asymptotic bias which does

not grow with the number of moment restrictions in contrast to GMM. Also, EL is effi-

cient and avoids arbitrary choices of initial consistent estimator and weight matrix as in

2-step GMM (Imbens (1997)). The downside of EL relative to GMM as is well known

is computational, demanding in the above formulation to solve a constrained optimization

problem with N + dim(θ) unknowns compared to an unconstrained problem with dim(θ)

unknowns for GMM. However, this was not an issue for this particular application: solv-

ing for θ̂ was a matter of a few minutes using Julia on a modern computer. Under suit-

able regularity conditions (Newey and Smith (2004)), the EL estimator is normally dis-

tributed with:
√
N
(
θ̂ − θ0

)
d−→ N

(
0,
(
M ′Ω−1M

)−1
)
, where M = E

[
∂mθ0

(Yi,Y
0
i ,Xi)

∂θ′

]
and

Ω = E
[
mθ0(Yi, Y

0
i , Xi)mθ0(Yi, Y

0
i , Xi)

′]. Efficient estimators of M and Ω are given by M̂ =∑N
i=1 π̂i

∂mθ̂(Yi,Y
0
i ,Xi)

∂θ′
and Ω̂ =

∑N
i=1 π̂imθ̂(Yi, Y

0
i , Xi)mθ̂(Yi, Y

0
i , Xi)

′ where π̂i, i = 1, . . . , N are

the EL probabilities.

Table 1 presents the EL estimates for the trivariate VAR(1) logit model in columns (I),
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(II), (III). For comparison, columns (IV), (V), (VI) report a random effect (RE) estimator

akin to Deza (2015) 14 while columns (VII), (VIII), (IV) display the “naive” logit maximum

likelihood estimator (MLE) which fits the same model but neglects the presence of fixed

effects. The first observation is that, in line with conventional wisdom, EL estimates for

the state-dependence parameters within drug, γ11, γ22, γ33, are all positive and statistically

significant. There is a sharp contrast in the magnitude of these estimates relative to the

other two estimators however. The naive MLE largely overestimates the amount of within

state-dependence, yielding coefficients that are comparatively three to five times larger. In-

tuitively, this may be rationalized by the fact that it misinterprets the serial correlation

produced by the fixed effects as evidence of state dependence. The RE estimator acts as an

intermediate case between the other two as can be seen in columns (IV)-(VI). This behavior

is not unexpected to the extent that RE accounts to some degree for the presence of unob-

served heterogeneity. We note nevertheless that the role of within state dependence seems

overstated by this approach.

Second, EL estimates in column (III) indicate a positive and statistically significant ef-

fect of marijuana on hard drugs, although the standard errors are a bit large. This supports

the view that marijuana usage may be a gateway to the consumption of harder drugs and

accords with the core findings of Deza (2015). The other two estimators also agree on a

positive influence of marijuana on the consumption of harder drugs, albeit it is statistically

insignificant in the RE case. Additionally, the more robust EL estimates suggest that alcohol

does not play a significant role in the consumption of either drug unlike RE and MLE.

We also computed two overidentification test statistics, presented in the bottom rows of

Table 1. The first is the empirical likelihood ratio test LR = −2
(∑N

i=1 ln π̂i − ln 1
N

)
. The

second is a variant of the usual overidentification test which uses the efficient weight matrix:

Wald =
1

N

 N∑
i=1

mθ̂(Yi, Y
0
i , Xi)

 N∑
i=1

π̂imθ̂(Yi, Y
0
i , Xi)mθ̂(Yi, Y

0
i , Xi)

′

−1 N∑
i=1

mθ̂(Yi, Y
0
i , Xi)


14As in Deza (2015), the heterogeneity distribution is discrete with 3 mass points and is independent of

the regressors. The initial condition relates to the covariates and heterogeneity through a logistic regression.
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In large samples, LR,Wald
d−→ χ2(45), where the degrees of freedom correspond to the

number of overidentifying restrictions (see, e.g Imbens (1997)). As both test values fall

below the 90th quantile of a χ2(45), the trivariate VAR(1) logit model appears appropriate.

Additional estimates for the iterated GMM estimator of Hansen et al. (1996) are reported

in Table 2 of the Online Appendix. The results closely mirror those for EL in Table 1.

Table 1: Parameter estimates of the trivariate VAR(1) logit based on NLSY97 data

Empirical
Likelihood

Random
Effects

Naive
MLE

A M HD A M HD A M HD
(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IV)

γm1 0.48 -0.06 0.38 1.45 -0.39 -0.28 2.47 0.88 0.81
(0.13) (0.21) (0.33) (0.10) (0.09) (0.18) (0.05) (0.06) (0.10)

γm2 0.29 0.83 0.49 -0.49 1.44 0.08 0.70 2.56 1.41
(0.20) (0.14) (0.24) (0.09) (0.09) (0.11) (0.06) (0.05) (0.08)

γm3 -0.29 0.19 0.48 -0.59 -0.20 1.60 0.25 0.72 2.11
(0.31) (0.22) (0.23) (0.18) (0.12) (0.10) (0.12) (0.08) (0.09)

age 0.09 -0.09 0.03 0.16 -0.14 -0.07 -0.04 -0.14 -0.21
(0.05) (0.07) (0.10) (0.02) (0.02) (0.03) (0.00) (0.00) (0.00)

college 0.25 0.20 0.31 0.75 -0.05 -0.20 0.42 -0.05 -0.24
(0.14) (0.15) (0.26) (0.06) (0.06) (0.08) (0.04) (0.04) (0.07)

LR Test 56.45
“Wald” Test 54.38

Notes: standard errors are reported in parenthesis. Columns titled “A”,“M”, “HD” report parameter esti-

mates for the alcohol layer, marijuana layer, and hard-drugs layer of the trivariate VAR(1) logit model.

7 Conclusion

Dynamic discrete choice models are widely used to study the determinants of repeated deci-

sions made by economic agents over time. This paper has introduced a systematic procedure

to estimate a large class of such models with logistic (or Type I extreme value) errors and

potentially many lags, all while remaining agnostic to unobserved individual heterogeneity.

Our application underscores the practical value of the methodology.
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There are several interesting directions for future research. One natural question is

whether the tools developed here can be deployed in other discrete choice frameworks with

similar or even more flexible structure. Another challenge lies in deriving complete basis of

moment restrictions beyond the binary response case for arbitrary time horizons. We are

investigating some of these topics in ongoing work.

References

Aguirregabiria, V. and Carro, J. M. (2021). Identification of average marginal effects in fixed
effects dynamic discrete choice models. arXiv preprint arXiv:2107.06141.

Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estima-
tors. Journal of the Royal Statistical Society Series B: Statistical Methodology, 32(2):283–
301.

Argañaraz, F. and Escanciano, J. C. (2023). On the existence and information of orthogonal
moments. arXiv preprint arXiv:2303.11418.

Bickel, P. J., Klaassen, C. A., Bickel, P. J., Ritov, Y., Klaassen, J., Wellner, J. A., and
Ritov, Y. (1993). Efficient and adaptive estimation for semiparametric models, volume 4.
Springer.

Bonhomme, S. (2012). Functional differencing. Econometrica, 80(4):1337 – 1385.

Browning, M. and Carro, J. M. (2014). Dynamic binary outcome models with maximal
heterogeneity. Journal of Econometrics, 178(2):805–823.

Card, D. and Hyslop, D. R. (2005). Estimating the effects of a time-limited earnings subsidy
for welfare-leavers. Econometrica, 73(6):1723–1770.

Chamberlain, G. (1980). Analysis of covariance with qualitative data. The review of economic
studies, 47(1):225–238.

Chamberlain, G. (1985). Heterogeneity, omitted variable bias, and duration dependence, page
3–38. Econometric Society Monographs. Cambridge University Press.

Chay, K. Y., Hoynes, H. W., and Hyslop, D. (1999). A non-experimental analysis of true
state dependence in monthly welfare participation sequences. In American Statistical
Association, pages 9–17.

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal
Statistical Society: Series B (Methodological), 20(2):215–232.
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Appendix

A Partial Fraction Decomposition

Lemma 6. For any reals u1, u2, . . . , uK, v1, v2, . . . , vK and a1, a2, . . . , aK, K ≥ 1 we have

1

1 +
K∑
k=1

evk+ak
+

K∑
k=1

(1− euk−vk)
evk+ak(

1 +
K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

) =
1

1 +
K∑
k=1

euk+ak

and

evj+aj

1 +
K∑
k=1

evk+ak
+ (1− e−uj+vj)

euj+aj(
1 +

K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

)+

K∑
k=1
k ̸=j

(1− e(uk−uj)−(vk−vj))
evk+ak+uj+aj(

1 +
K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

) =
euj+aj

1 +
K∑
k=1

euk+ak

Proof. Verification of these identities is straightforward and thus left to the reader.

Lemma 7. Fix M ≥ 2, let Y = {0, 1}M . Then, for any k ∈ Y and any reals u1, u2, . . . , uM ,

v1, v2, . . . , vM and a1, a2, . . . , aM , we have

M∏
m=1

ekm(vm+am)

1 + evm+am
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)

1 + eum+am

elm(vm+am)

1 + evm+am
=

M∏
m=1

ekm(um+am)

1 + eum+am

Proof. Let

LHS =
M∏
m=1

ekm(vm+am)

1 + evm+am
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)

1 + eum+am

elm(vm+am)

1 + evm+am

and let Num denote the numerator of LHS. We have Num = Num1 +Num2 with

Num1 =
M∏
m=1

ekm(vm+am)(1 + eum+am)

Num2 =
∑

l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)+lm(vm+am)
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=
M∏
m=1

ekm(um+am)
∑

l∈Y\{k}

M∏
m=1

elm(vm+am) −
∑

l∈Y\{k}

e
∑M

j=1 lj(uj+aj)+kj(vj+aj)

=
M∏
m=1

ekm(um+am)
∑

l∈Y\{k}

M∏
m=1

elm(vm+am) −
M∏
m=1

ekm(vm+am)
∑

l∈Y\{k}

M∏
m=1

elm(um+am)

Since
∑
l∈Y

∏M
m=1 e

lm(vm+am) =
∏M

m=1(1+e
vm+am),

∑
l∈Y

∏M
m=1 e

lm(um+am) =
∏M

m=1(1+e
um+am)

we get

Num2 =
M∏
m=1

ekm(um+am)

 M∏
m=1

(1 + evm+am)−
M∏
m=1

ekm(vm+am)


−

M∏
m=1

ekm(vm+am)

 M∏
m=1

(1 + eum+am)−
M∏
m=1

ekm(um+am)


=

M∏
m=1

ekm(um+am)(1 + evm+am)−
M∏
m=1

ekm(vm+am)(1 + eum+am)

=
M∏
m=1

ekm(um+am)(1 + evm+am)−Num1

It follows that Num =
∏M

m=1 e
km(um+am)(1 + evm+am) and consequently

LHS =

∏M
m=1 e

km(um+am)(1 + evm+am)∏M
m=1(1 + eum+am)(1 + evm+am)

=
M∏
m=1

ekm(um+am)

1 + eum+am

B Proofs of key results in the main text

Proofs of Theorem 1 and Theorem 3. We focus on establishing Theorem 3 but highlight

where the arguments for the AR(1) would differ at each important step of the proof. Fix a

history y ∈ YT and consider the corresponding basis element 1{. = y} of RYT
. We have:

E (p)

y0,x,T

[
1{. = y}

]
= P (Yi = y|Y 0

i = y0, Xi = x,Ai = .) where by definition, for all a ∈ R,

P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) = Ny(ea)

Dy(ea)
with Ny(ea) =

∏T
t=1 e

yt(
∑p

r=1 γ0ryt−r+x′tβ0+a) and

Dy(ea) =
∏T

t=1

(
1 + e

∑p
r=1 γ0ryt−r+x′tβ0+a

)
. Notice that Ny(ea) and Dy(ea) are just polyno-

mials of ea - with dependence on y0, x, T suppressed for conciseness - and that we always

have deg
(
Ny(ea)

)
≤ deg

(
Dy(ea)

)
with strict inequality unless y = 1T . Moreover, since
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by assumption for any t, s ∈ {1, . . . , T − 1} and y, ỹ ∈ Yp, γ′0y + x′tβ0 ̸= γ′0ỹ + x′sβ0 if

t ̸= s or y ̸= ỹ, Dy(ea) is a product of distinct irreducible polynomials in ea. Thus, by

standard results on partial fraction decompositions, there exists a unique set of coefficients

(λy0, λ
y
1, . . . , λ

y
T ) ∈ RT+1 independent of the fixed effect such that:

P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) = λy0 +

T∑
t=1

λyt
1

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

= λy0 + T0(a) + T1(a) + T2(a)

where T0(a) = λy1
1

1+e
∑p

r=1 γ0ry1−r+x′1β0+a
, T1(a) =

∑p
t=2 λ

y
t

1

1+e
∑p

r=1 γ0ryt−r+x′tβ0+a
, and finally

T2(a) =
∑T

t=p+1 λ
y
t

1

1+e
∑p

r=1 γ0ryt−r+x′tβ0+a
with λy0 = 0 unless y = 1T . This decomposition

breaks down the conditional probability P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) into components

that depend on the initial condition, namely T0(a), T1(a), and components that do not, i.e

T2(a). Notice that T1(a) would not appear in the AR(1) case. Starting with the first group,

we can write:

T0(a) = λy11{y0 = 1}+ λy11{y0 = 0}πy0|y
0

0 (x, a)− λy11{y0 = 1}πy0|y
0

0 (x, a)

T1(a) =

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}

+

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 0, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
0|0,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

−
p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
1|1,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

Likewise, for the second group,

T2(a) = +
T∑

t=p+1

λyt
∑

ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}

+
T∑

t=p+1

λyt
∑

ỹp2∈Yp−1

1{yt−1 = 0, yt−2 = y2, . . . , yt−p = ỹp}π
0|0,ỹp2
t−1 (a, x)

−
T∑

t=p+1

λyt
∑

ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}π
1|1,ỹp2
t−1 (a, x)
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The unique decompositions for each term make it clear that

F (p)

y0,x,T =

1, π
y0|y0
0 (., x),

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1


forms a basis of Im

(
E (p)

y0,x,T

)
if we can show that the transition probabilities are elements of

Im
(
E (p)

y0,x,T

)
. We now argue that it is indeed the case:

• First, π
y0|y0
0 (., x) ∈ Im

(
E (p)

y0,x,T

)
since

E[(1− y0)(1− Yi1) + y0Yi1|Y 0
i = y0, Xi = x,Ai = a] = π

y0|y0
0 (a, x)

• Second,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1

∈ Im
(
E (p)

y0,x,T

)
by Theorem 4. For the AR(1)

model, one would appeal to Lemma 2.

• Finally, one can easily adapt the reasoning employed to prove Theorem 4 to show

that

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

∈ Im
(
E (p)

y0,x,T

)
. In proving Theorem 4,

we already established that:
(
π
y1|y1,y0,...,y−(p−2)

1 (., x))
)
y1∈Yt−1

∈ Im
(
E (p)

y0,x,T

)
. Now, by

inspecting the induction argument of Theorem 4, it is easily seen that the result that

for T ≥ p+ 1 and t ∈ {p, . . . , T − 1}

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

for k = 0, . . . , p − 2 can be generalized. It actually holds for t = k + 1 when k =

0, . . . , p− 2, yielding

E
[
ϕ
y1|yt1
θ0

(Yit+1, Yit, Y
t−1
i1−p, Xi)|Y 0

i , Xi, Ai

]
= π

y1|yt1,Yi0,...,Yit−(p−1)

t (Ai, Xi)

which is the desired result. These terms are not present in the AR(1) case which

simplifies the argument.

Thus, we have shown that F (p)

y0,x,T is a basis of Im
(
E (p)

y0,x,T

)
. Next, since E (p)

y0,x,T is a linear map-

ping, the rank nullity theorem entails: dim
(
ker(E (p)

y0,x,T )
)
= dim

(
R{0,1}T

)
− rank

(
E (p)

y0,x,T

)
.

We have the following implications:
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1. If T ≤ p, |F (p)

y0,x,T | = 1 + 1 +
T∑
t=2

2t−1 = 2 +
T−1∑
t=1

2t = 2 + 21−2T−1

1−2
= 2T . Hence,

rank
(
E (p)

y0,x,T

)
= 2T and dim

(
ker(E (p)

y0,x,T )
)
= 2T − 2T = 0

2. If T = p+1, |Fy0,p,T | = 1+1+
p∑
t=2

2t−1+2p = 2×2p = 2p+1. Then, rank
(
E (p)

y0,x,T

)
= 2T

and dim
(
ker(E (p)

y0,x,T )
)
= 2T − 2p+1 = 0

3. If T ≥ p+2, |Fy0,p,T | = 1+1+
p∑
t=2

2t−1+2p(T −p) = 2p+2p(T −p) = (T −p+1)2p. It

follows that rank
(
E (p)

y0,x,T

)
= (T − p+1)2p and dim

(
ker(E (p)

y0,x,T )
)
= 2T − (T − p+1)2p

Proofs of Lemma 1 and Lemma 2. Without loss of generality, we will consider

the case with covariates. The discussion in Section 3.2.1 implies the functional form

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1, Xi) for k ∈ Y . Therefore,

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) is null when Yit ̸= 0 implying

E
[
ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

1

1 + eγ0Yit−1+X′
itβ0+Ai

×(
eX

′
it+1β0+Ai

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (1, 0, Yit−1, Xi) +

1

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (0, 0, Yit−1, Xi)

)

Thus, to get the transition probability π
0|0
t (Ai, Xi) = 1

1+e
X′

it+1
β0+Ai

at θ = θ0, it must be

that ϕ
0|0
θ (1, 0, Yit−1, Xi) = eγYit−1+(Xit−Xit+1)

′β, ϕ
0|0
θ (0, 0, Yit−1, Xi) = 1, and that ∀k ∈ Y

ϕ
0|0
θ (k, 1, Yit−1, Xi) = 0. That is: ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

Yit+1(γYit−1−∆X′
it+1β).

Likewise, ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) is null when Yit ̸= 1 implying

E
[
ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

eγ0Yit−1+X
′
itβ0+Ai

1 + eγ0Yit−1+X′
itβ0+Ai

×(
eγ0+X

′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

ϕ
1|1
θ (1, 1, Yit−1, Xi) +

1

1 + eγ0+X
′
it+1β0+Ai

ϕ
1|1
θ (0, 1, Yit−1, Xi)

)

Hence, to get π
1|1
t (Ai, Xi) = e

γ0+X′
it+1β0+Ai

1+e
γ0+X′

it+1
β0+Ai

at θ = θ0, we must set: ϕ
1|1
θ (1, 1, Yit−1, Xi) =

1, ϕ
1|1
θ (0, 1, Yit−1, Xi) = eγ(1−Yit−1)+(Xit+1−Xit)

′β and ϕ
1|1
θ (k, 0, Yit−1, Xi) = 0, ∀k ∈ Y . In

compact form this is: ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+β∆Xit+1)
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Proof of Lemma 3. By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
(1− Yis) + ω

0|0
t,s (θ0)Yisϕ

0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)E

[
YisE

[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)E

[
Yis|Yi0, Y s−1

i1 , Xi, Ai
] 1

1 + eκ
0|0
t (θ0)+Ai

=
1

1 + eµs(θ0)+Ai
+ (1− eκ

0|0
t (θ0)−µs(θ0))

eµs(θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
0|0
t (θ0)+Ai)

=
1

1 + eκ
0|0
t (θ0)+Ai

= π
0|0
t (Ai, Xi)

The second equality follows from the measureability of the weight ω
0|0
t,s (θ0) with respect to the

conditioning set. The third equality follows from the law of iterated expectations and Lemma

2. The penultimate equality uses the first identity in Lemma 6 (for K = 1) . Similarly,

E
[
ζ
1|1
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
Yis + ω

1|1
t,s (θ0)(1− Yis)ϕ

1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)E

[
(1− Yis)E

[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)E

[
(1− Yis)|Yi0, Y s−1

i1 , Xi, Ai
] eκ

1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

=
eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+
(
1− e−(κ

1|1
t (θ0)−µs(θ0))

) eκ
1|1
t (θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
1|1
t (θ0)+Ai)

=
eκ

1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

= π
1|1
t (Ai, Xi)

The second equality follows from the measurability of the weight ω
1|1
t,s (θ0) with respect to

the conditioning set. The third equality follows from the law of iterated expectations and

Lemma 2. The penultimate equality uses the second identity in Lemma 6 (for K = 1).

Showing E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi) is analogous.
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Proof of Proposition 1. For any t, s verifying T − 1 ≥ t > s ≥ 1 and k ∈ Y , we have

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s+1
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
ϕ
k|k
θ0

(Y t+1
it−1, Xi)− ζ

k|k
θ (Y t+1

it−1, Y
s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
E
[
ϕ
k|k
θ0

(Y t+1
it−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
− π

k|k
t (Ai, Xi)

= E
[
π
k|k
t (Ai)|Yi0, Y s−1

i1 , Xi, Ai

]
− π

k|k
t (Ai)

= π
k|k
t (Ai)− π

k|k
t (Ai)

= 0

The second and third equalities follow from the law of iterated expectations, Lemma 3 and

Lemma 2. Showing E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= 0 is analogous.

Proof of Proposition 2. In what follows, we drop the cross-sectional subscript i to

economize on space. The proof is based on an application of Theorem 3.2 in Newey (1990).

First, in paragraphs I)-II), we verify that the model is mean-square differentiable and char-

acterize the nonparametric tangent set T . Second, in paragraphs III)-IV), we characterize

its orthogonal complement T ⊥ and verify that the efficient score - the projection of the

score onto T ⊥ - coincides with the efficient moment function for E
[
ψθ0(Y0, Y,X)|Y0, X

]
= 0,

namely ψeffθ0
(Y0, Y,X) = −D(Y0, X)′Σ(Y0, X)−1ψθ0(Y0, Y,X) (see e.g Newey and McFadden

(1994))

I) Preliminary calculations

The parametric component of the AR(1) model writes f(Y |Y0, X,A; θ) =
T∏
t=1

eYt(γYt−1+X′
tβ+A)(

1+eγYt−1+X′
tβ+A

) .
This implies

ln f(Y |Y0, X,A; θ) =
T∑
t=1

Yt(γYt−1 +X ′
tβ + A)−

T∑
t=1

Yt−1 ln
(
1 + eγ+X

′
tβ+A

)
−

T∑
t=1

(1− Yt−1) ln
(
1 + eX

′
tβ+A

)
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which is continously differentiable in θ. Hence

∂ ln f(Y |Y0, X,A; θ)
∂γ

=
T∑
t=1

Yt−1

(
Yt −

eγ+X
′
tβ+A

1 + eγ+X
′
tβ+A

)
∂ ln f(Y |Y0, X,A; θ)

∂β
=

T∑
t=1

Xt

(
Yt − Yt−1

eγ+X
′
tβ+A

1 + eγ+X
′
tβ+A

− (1− Yt−1)
eX

′
tβ+A

1 + eX
′
tβ+A

)

and because Y = {0, 1}, we have∣∣∣∣∂ ln f(Y |Y0, X,A; θ)
∂γ

∣∣∣∣ ≤ T (3)∣∣∣∣∂ ln f(Y |Y0, X,A; θ)
∂β

∣∣∣∣ ≤ T∑
t=1

|Xt|

II) Mean-square differentiability and nonparametric tangent set

Consider a parametric likelihood for (Y,A)|Y0, X

f(Y,A|Y0, X; θ, η) = f(Y |Y0, X,A; θ)q(A|Y0, X; η)

where q(.|Y0, X; η) is a density for the heterogeneity such that: a) at η = 0, q(.|Y0, X; 0) =

q(.|Y0, X) and b) q(.|Y0, X; η)1/2 is mean-square differentiable at η = 0 with derivative equal

to 1
2
q(.|Y0, X)K(.|Y0, X). We will prove that f(Y,A|Y0, X; θ, η)1/2 is mean-square differen-

tiable at (θ0, 0), meaning E [Υ] = o(
∥∥h2∥∥+ η2) where

Υ = f(Y,A|Y0, X; θ0 + h, η)1/2 − f(Y,A|Y0, X; θ0, 0)
1/2

− 1

2
f(Y,A|Y0, X; θ0, 0)

1/2

(
h′
∂ ln f(Y |Y0, X,A; θ0)

∂θ
+ ηK(A|Y0, X)

)
Similarly to Lemma A-2 in Hahn (1994), we decompose Υ in three terms

Υ = Υ1 +Υ2 +Υ3

Υ1 =

(
q(A|Y0, X; η)1/2 − q(A|Y0, X)1/2 − η

2
q(A|Y0, X)1/2K(A|Y0, X)

)
f(Y |Y0, X,A; θ0 + h)1/2

Υ2 =

(
f(Y |Y0, X,A; θ0 + h)1/2 − f(Y |Y0, X,A; θ0)1/2 −

1

2
f(Y |Y0, X,A; θ0)1/2h′

∂ ln f(Y |Y0, X,A; θ0)
∂θ

)
× q(A|Y0, X)1/2

Υ3 =
η

2
q(A|Y0, X)1/2K(A|Y0, X)

(
f(Y |Y0, X,A; θ0 + h)1/2 − f(Y |Y0, X,A; θ0)1/2

)
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By Jensen’s inequality, we have Υ2 ≤ 3Υ2
1+3Υ2+3Υ2

3. By b), E[Υ2
1] = o(η2) = o(∥h∥2+η2).

To show that E[Υ2
2] = o(∥h∥2 + η2), we verify that f(.|Y0, X,A; θ0) verifies the condi-

tions of Lemma A-1 in Hahn (1994). The first condition is that f(Y |Y0, X,A; .) is con-

tinuously differentiable in θ which follows from paragraph I). The second condition is that

E
[
∂ ln f(Y |Y0,X,A;.)

∂θ
∂ ln f(Y |Y0,X,A;.)

∂θ′

]
is continuous in θ and finite at θ0. This follows from Theo-

rem 2 assumption i), inequalities (3) and the dominated convergence theorem. By Lemma

A-1 in Hahn (1994), f(.|Y0, X,A; θ)1/2 is mean square differentiable at θ0 with derivative

1
2
f(Y |Y0, X,A; θ0)1/2 ∂ ln f(Y |Y0,X,A;θ0)

∂θ
. This implies that: E

[
Υ2

2

]
= o(∥h∥2) = o(∥h∥2 + δ2).

Last, E [Υ3] = o(∥h∥2+δ2) by the arguments on pages 624-625 of Hahn (1994). We conclude

that f(Y,A|Y0, X; θ, η)1/2 is mean-square differentiable at (θ0, 0) with derivative:

1

2
f(Y,A|Y0, X; θ0, 0)

1/2

(
∂ ln f(Y |Y0, X,A; θ0)

∂θ′
, K(A|Y0, X)

)′

From Bickel et al. (1993) Proposition A.5.5, f(Y |Y0, X; θ, η)1/2 is mean-square differentiable

at (θ0, 0) with derivative

1

2
f(Y |Y0, X; θ0, 0)

1/2

(
E
[
∂ ln f(Y |Y0, X,A; θ0)

∂θ′
|Y0, Y,X

]
,E
[
K(A|Y0, X)|Y0, Y,X

])′

This implies that the nonparametric tangent set is

T =
{
E[K(A, Y0, X)|Y0, Y,X] such that E[K(A, Y0, X)|Y0, X] = 0

}
Having established mean-square differentiability of the model, noting that T is linear, and

that by Theorem 2 assumption iii),

E
[
ψeffθ0

(Y0, Y,X)ψeffθ0
(Y0, Y,X)′

]
= E

[
D(Y0, X)′Σ(Y0, X)−1D(Y0, X)′

]
is nonsingular, all that remains to check are: c) ψeffθ0

(Y0, Y,X) ∈ T ⊥ and d) Sθ(Y0, Y,X)−

ψeffθ0
(Y0, Y,X) ∈ T where Sθ(Y0, Y,X) = E

[
∂ ln f(Y |Y0,X,A;θ0)

∂θ
|Y0, Y,X

]
. To this end, similarly

to Hahn (1997), we shall first show that c) and d) hold conditional on a pair (y0, x) ∈

Y ×X T for the initial condition and the regressors. In other words, we will prove next that

ψeffθ0
(y0, Y, x) is the projection of the score onto the orthocomplement of the closed linear
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space

T(y0,x) =
{
E[K(A, y0, x)|Y0 = y0, Y,X = x] such that E[K(A, y0, x)|Y0 = y0, X = x] = 0

}
III) Verification of condition c) ψeff

θ0
(y0,Y,x) ∈ T ⊥

(y0,x)

We begin by characterizing the orthocomplement of the nonparametric tangent set T ⊥
(y0,x)

. By

definition, any g(y0, Y, x) ∈ T ⊥
(y0,x)

is such that for any element of T(y0,x), E[K(A, y0, x)|Y0 =

y0, Y,X = x], we have

0 = E
[
g(y0, Y, x)E[K(A, y0, x)|Y0 = y0, Y,X = x]′|Y0 = y0, X = x

]
=

∫
E
[
g(y0, Y, x)|Y0 = y0, X = x,A = a

]
K(a, y0, x)

′q(a|y0, x)da

Since this equality must hold for anyK verifying E[K(A, y0, x)|Y0 = y0, X = x] = 0, choosing

K(A, y0, x) = E
[
g(y0, Y, x)|Y0 = y0, X = x,A

]
− E

[
g(y0, Y, x)|Y0 = y0, X = x

]
yields V

(
E
[
g(y0, Y, x)|Y0 = y0, X = x,A

]
|Y0 = y0, X = x

)
= 0 so that

E
[
g(y0, Y, x)|Y0 = y0, X = x,A

]
= c(y0, x) q-a.s for some constant vector c(y0, x). To

see that this equality actually holds on the entire real line beyond Aq - the support of q -

remark first that E
[
g(y0, Y, x)|Y0 = y0, X = x,A = .

]
is real analytic on Aq since logit proba-

bilities are real analytic as ratios of exponential functions. Second, by Theorem 2 assumption

ii), Aq has an accumulation point. Thus, the Identity Theorem (see e.g Proposition 7 in

Argañaraz and Escanciano (2023)) implies that E
[
g(y0, Y, x)|Y0 = y0, X = x,A

]
= c(y0, x),

A ∈ R. Conversely, it is clear that any g function such that E
[
g(y0, Y, x)|Y0 = y0, X = x,A

]
is constant in A will be an element of T ⊥

(y0,x)
since E[K(A, y0, x)|Y0 = y0, X = x] = 0. We

conclude that

T ⊥
(y0,x)

= {g(y0, Y, x) | g(y0, Y, x) = c(y0, x) + g∗(y0, Y, x), c(y0, x) ∈ RKx+1, g∗ ∈ T ⊥
(y0,x),∗}

T ⊥
(y0,x),∗ = {g∗(y0, Y, x) |E

[
g∗(y0, Y, x)|Y0 = y0, X = x,A

]
= 0, A ∈ R}

An important observation is that T ⊥
(y0,x),∗ = ker(Ey0,x,T )Kx+1, where we recall that the

nullspace of the conditional expectation operator Ey0,x,T is precisely the set of valid moment

functions in the AR(1) model. By Theorem 1, this is a (2T − 2T )-dimensional vector
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space with an example of basis elements given in Proposition 1. This makes it clear that

ψeffθ0
(y0, Y, x) ∈ T ⊥

(y0,x),∗ since each of its components is a linear combination of the valid

moment functions in Proposition 1. Finally since T ⊥
(y0,x),∗ ⊂ T ⊥

(y0,x)
, ψeffθ0

(y0, Y, x) ∈ T ⊥
(y0,x)

.

IV) Verification of condition d) Sθ(y0,Y,x)− ψeff
θ0

(y0,Y,x) ∈ T(y0,x)

Since T(y0,x) is a closed vector space of a Hilbert space, T(y0,x) =
(
T ⊥
(y0,x)

)⊥
.

Thus, to check condition d) Sθ(y0, Y, x) − ψeffθ0
(y0, Y, x) ∈ T(y0,x), we will ver-

ify that ∀g ∈ T ⊥
(y0,x)

, E
[(
Sθ(y0, Y, x)− ψeffθ0

(y0, Y, x)
)
g(y0, Y, x)

′|Y0 = y0, X = x

]
=

0. Given our characterization of T ⊥
(y0,x)

, it is sufficient to check that

E
[(
Sθ(Y0, Y,X)− ψeffθ0

(y0, Y, x)
)
ψθ0(y0, Y, x)

′|Y0 = y0, X = x

]
= 0.

To this end, note that by the Generalized Information Equality (c.f equation (5.1) in Newey

and McFadden (1994)) we have

E
[
∂ψθ0(y0, Y, x)

∂θ′
|Y0 = y0, X = x

]
= −E

[
ψθ0(y0, Y, x)S

θ(y0, Y, x)
′|Y0 = y0, X = x

]
which implies

ψeffθ0
(y0, Y, x) = E

[
ψθ0(y0, Y, x)S

θ(y0, Y, x)
′|Y0 = y0, X = x

]′
×

E
[
ψθ0(y0, Y, x)ψθ0(y0, Y, x)

′|Y0 = y0, X = x
]−1

ψθ0(y0, Y, x)

= E
[
Sθ(y0, Y, x)ψθ0(y0, Y, x)

′|Y0 = y0, X = x
]
×

E
[
ψθ0(y0, Y, x)ψθ0(y0, Y, x)

′|Y0 = y0, X = x
]−1

ψθ0(y0, Y, x)

= E∗
[
Sθ(y0, Y, x)|ψθ0(y0, Y, x);Y0 = y0, X = x

]
where E∗ [Z1|Z2;W

]
denotes the (mean-squared error minimizing) linear predictor of Z1 on

Z2 given W . Therefore, it immediately follows by properties of conditional linear predictors

(e.g Wooldridge (1999), Lemma 4.1) that

E
[(
Sθ(y0, Y, x)− ψeffθ0

(y0, Y, x)
)
ψθ0(y0, Y, x)

′|Y0 = y0, X = x

]
= 0

We conclude that ψeffθ0
(y0, Y, x) is the projection of the score onto T ⊥

(y0,x)
. It follows that

ψeffθ0
(Y0, Y,X) is the projection of the score onto T ⊥, i.e it is the efficient score.
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Proof sketch of Theorem 4. In model (ARp), with T ≥ 2 and t ∈ {1, . . . , T − 1}, the

moment functions

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yt, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

can be viewed as the counterpart of the AR(1) transition functions in Lemma 2 where one

would treat lagged outcome variables Yit−r for r = 2, . . . , p as additional strictly exogenous

regressors. Leveraging this insight, it immediately follows from the proof of Lemma 2 that

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

0|0,Yit−1,...,Yit−(p−1)

t (Ai, Xi)

=
1

1 + e
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

1|1,Yit−1,...,Yit−(p−1)

t (Ai, Xi)

=
eγ01+

∑p
l=2 γ0lYit+1−l+X

′
it+1β0+Ai

1 + eγ01+
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

Now, for T ≥ p+ 1 fix t ∈ {p, . . . , T − 1} and y = (y1, . . . , yp) = yp1 ∈ {0, 1}p. One can show

by finite induction the statement P(k):

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

for k = 0, . . . , p− 2, p ≥ 2. We give a brief proof sketch below.

Base step: P(0) is true by the above result which also deals with the edge case p = 2.

Thus, we can assume p ≥ 3 in the remainder of the induction argument.

Induction step: Suppose P(k − 1) is true for some k ∈ {1, . . . , p− 2}, we show that P(k)

is true. Using the law of iterated expectations, the induction hypothesis P(k − 1) and the
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identities of Lemma 6, we have for y1 = 0, yk+1 = 1

E
[
ϕ
0|0,yk2 ,1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
(1− Yit−k) + w

0|0,yk2 ,1
t (θ0)ϕ

0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai

+ w
0|0,yk2 ,1
t (θ0)E

[
E
[
ϕ
0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)|Y 0

i , Y
t−k
i1 , Xi, Ai

]
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai
w

0|0,yk2 ,1
t (θ0)E

[
π
0|0,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi)Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai
+ w

0|0,yk2 ,1
t (θ0)E

[
1

1 + e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

=
1

1 + eut−k(θ0)+Ai
+ (1− e(k

0|0,yk2 ,1

t (θ0)−ut−k(θ0)))
1

1 + ek
0|0,yk2 ,1

t (θ0)+Ai

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

=
1

1 + ek
0|0,yk2 ,1

t (θ0)+Ai

= π
0|0,yk2 ,1,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

We leave out the derivations for the other three configurations: y1 = 0, yk+1 = 0, and

y1 = 1, yk+1 = 0, and y1 = 1, yk+1 = 1 which follow completely analogous steps. It then

remains to show that

E
[
ϕ
y1|yp1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−1), Xi)|Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

To this end, it suffices to repeat the calculations employed in the induction argument but

using this time

E
[
ϕ
y1|yp−1

1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−2), Xi)|Y 0

i , Y
t−(p−1)
i1 , Xi, Ai

]
= π

y1|yp−1
1 ,Yit−(p−1)

t (Ai, Xi)

k
y1|yp1
t (θ) =

p∑
r=1

γryr +X ′
it+1β

ut−(p−1)(θ) =

p∑
r=1

γrYit−(r+p−1) +X ′
it−(p−1)β

w
y1|yp1
t (θ) =

[
1− e(k

y1|y
p
1

t (θ)−ut−(p−1)(θ))

]yp [
1− e−(k

y1|y
p
1

t (θ)−ut−(p−1)(θ))

]1−yp
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