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Abstract
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show how the structure of logit probabilities and basic properties of rational fractions
can be used to construct moment functions free of the fixed effects in a way that scales
naturally with the lag order and the number of observed periods. We demonstrate
the approach in binary response models of arbitrary lag order, first-order panel vector
autoregressions and dynamic multinomial logit models. The semiparametric efficiency
bound is characterized for the leading binary case with one lag. Finally, we illustrate
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1 Introduction

Dynamic discrete choice models with logistic errors and unobserved individual heterogeneity
underlie much work examining state-dependence in economics. Examples include studies
of labor market outcomes (Magnac (2000)), welfare participation (Chay et al. (1999), Card
and Hyslop (2005)), health plan choices (Pakes et al. (2021)), drug addiction (Deza (2015)),
and even transitivity in networks (Graham (2013), Graham (2016)). By nature, inference in
such models can be complex, but a powerful principle is to look for orthogonality restrictions
independent of unit-specific effects to secure consistent estimation of common parameters.
In short panels, these so-called fixed effects strategies effectively bypass two issues: i) the
incidental parameters problem associated with maximum likelihood estimation (Neyman and
Scott (1948)), ii) risking misspecification by parameterizing individual heterogeneity and its
relationship with initial outcomes which are inherently unknown.

An early breakthrough providing restrictions of this type in simple models with only a
lagged outcome variable came from conditional likelihood, as exemplified by Cox (1958),
Chamberlain (1985), Magnac (2000). This approach leverages sufficient statistics tied to
the logistic assumption to eliminate the fixed effect. Subsequently, Honoré and Kyriazidou
(2000) extended this idea to models with strictly exogenous regressors, showing its viability
if the regressors remain constant over specific time periods (see also, Honoré and Kyriazidou
(2019), Muris et al. (2020)). While relevant in certain settings, the stability requirement
on the regressors does impose two limitations for the conditional likelihood approach: it
inherently rules out time effects and implies rates of convergence slower than v/N for contin-
uous explanatory variables. Furthermore, calculations from Honoré and Kyriazidou (2000)
suggested that it does not easily extend to models with a higher lag order. These short-
comings have motivated the search for alternative solutions, culminating in a moment-based
paradigm. Its essence is the construction of moment functions free from fixed effects enabling
general estimation at v/ N-rate. Kitazawa et al. (2013, 2016) and Kitazawa (2022) represent
creative examples of this idea for the AR(1) - autoregressive of order one - logit model.
A more systematic framework to obtain moment restrictions is offered by functional differ-

encing (Bonhomme (2012)), and the recent contributions of Honoré and Weidner (2020),



Honoré et al. (2021), and to some extent Dobronyi et al. (2021)' can be viewed as powerful
displays of this technique in discrete choice models when coupled with symbolic computing
(e.g Mathematica).

The core contribution of this paper is a new general approach to construct moment re-
strictions in a broad class of dynamic fixed effects logit models (henceforth DFEL), where
unit-specific effects feature as “heterogeneous” intercepts. This class encompasses many
specifications commonly encountered in applications but excludes models with heterogeneous
coefficients on lagged outcomes and/or regressors as in Chamberlain (1985) and Browning
and Carro (2014). Unlike recent competing methods, ours does not require numerical experi-
mentation or symbolic computing, enabling us to advance on multiple fronts. First, we show
that the existence of moment restrictions in DFEL models is rooted in the rational fractional
structure of logit probabilities with respect to fixed effects. Fundamentally, this is because
products of rational fractions can be decomposed into sums of simpler rational fractions.
Leveraging this fact, we formally resolve open conjectures regarding the number of moment
conditions available in binary logit models. Second, our procedure scales efficiently with
the number of time periods, and also with the lag order in binary response models. A key
result is the discovery of a novel recursive formula that enables the construction of moment
restrictions for an AR(p) from features of an AR(p — 1). Third, the algebraic foundation of
our procedure allows us to easily derive extensions for the VAR(1) logit model, the dynamic
multinomial logit model, and dynamic network formation models in the spirit of Graham
(2013), Graham (2016). Detailed results for the latter two models are provided in the Online
Appendix.

The method exploits two key insights. First, the (individual-specific) transition prob-
abilities of logit models can often be expressed as conditional expectations of functions of
observables and common parameters given the initial condition, the regressors and the fixed
effects. We refer to these moment functions as transition functions. They have the crucial
feature of not depending on individual fixed effects. Second, with sufficient time periods,

many transition probabilities admit at least two distinct transition functions. Together, these

Dobronyi et al. (2021) also derive moment inequality conditions in AR(1) and AR(2) logit models which
is beyond the scope of standard functional differencing.



insights motivate a natural two-step recipe to systematically form valid moment functions:
Step 1) compute the model’s transition functions, Step 2) take differences of two transition
functions associated to the same transition probability. We find that a careful application
of this procedure yields all the moment equality restrictions available for binary response
models. We build on this property to characterize the efficiency bound in the leading AR(1)
logit model, complementing Hahn (2001) and Gu et al. (2023).

The remainder of the paper proceeds as follows. In Section 2, we introduce the class of
models under consideration following Honoré and Weidner (2020) relatively closely, and out-
line our methodology for obtaining moment restrictions. Section 3 gives a detailed analysis
of the baseline AR(1) logit model. We present a new perspective to enumerate the available
moment restrictions, demonstrate our approach for deriving their expressions, and charac-
terize the efficiency bound. In Section 4 and Section 5, we provide some extensions for AR(p)
logit models and the VAR(1) logit model. Section 6 contains an empirical application inves-
tigating the dynamics of drug consumption among young people. Section 7 concludes. The
Appendix contains proofs of key results. The Online Appendix compiles auxiliary results
and discussions of the dynamic multinomial logit model and a dynamic network formation

model, which may be of independent interest.

2 Setup, objective, and methodology

General setup. The setting is panel data with ¢ = 1,..., N individuals followed over
t = 1,...,T periods. The econometrician observes (Y%, Y;, X;) for all individuals, where
Y; = (Yi1,...,Yir) € YT denotes the endogenous discrete outcomes, X; = (X;1,..., Xir) €
XT the covariates and Y? = (Yjy,Y;_1,...) the initial condition, i.e the set of observed
outcomes prior to period ¢ = 1. The models we are considering feature two components.
The first component is a parametric model of outcomes Y; conditional on strictly exogenous
explanatory variables (Y, X;) and time-invariant unobserved heterogeneity A; € A. For a

known lag order p > 1, and using the shorthand 2! = (24, 2,1, ..., z5) for s < t, it takes the



form

Fly’ z,a) = P(Y; =yl =", Xi = 2, A; = a) H 16 (g, 0 )
=0

Yt4+1 |yt (p—1)

where T, (a,2;00) = P(Yiy1 = yena|YE 1) = y}f_(p_l),Xi = x,A; = a) denote
the model’s (individual-specific) transition probabilities known up to the finite dimensional
parameter 5. We shall omit the dependence on 6y in the sequel. The second component
of the model is the distribution of heterogeneity A; conditional on (V" = ¢° X; = x) which
we denote as ¢(.|y",z). Following a large literature in panel data, we leave it unrestricted
thereby treating A; as a “fixed effect”. Jointly, the two model components map to conditional

outcome probabilities

s 2) = PY; = Y0 = 4%, X, = 2) = /A F(yl®, 7, a)g(aly®, ©)da

that are identified in the population. It is assumed that (Y°,Y;, X;, A;) is i.i.d across indi-
viduals.

Objective. We are primarily concerned with the identification and estimation of 6, in short
panels, i.e for fixed T'. To this end, the chief objective of this paper is to show how to
construct moment functions ¥y (Y;, Y, X;) free of the fixed effect parameter that are valid

in the sense that:
E [0, (Y:, Y}, Xi) | Y2, X3, Ai] = 0 (1)
When this is possible, the law of iterated expectations implies the conditional moment:
E [, (V;, Y2, X,) | Y2, X, = 0

which can in turn be leveraged to assess the identifiability of 6y and form the basis of an
estimation strategy by GMM or empirical likelihood?. This is the central idea underlying
functional differencing (Bonhomme (2012)) and was recently applied by Honoré and Weidner

2Notice that for E [wgo (Y, Y2, X)) | YD, Xi] = 0 to hold irrespective of the distribution of the fixed effect,
(1) must be satisfied. If (1) were strictly positive on a set of positive Lebesgue measure, there would exist
distributions of fixed effects ¢ supported on that set inducing violations of the desired moment equality. The
same holds true if (1) were instead strictly negative on a set of positive Lebesgue measure.



(2020) to derive valid moment conditions for a class of dynamic logit models with scalar fixed
effects. We borrow the same insight but instead of searching for solutions numerically on a
case-by-case basis as explained in Honoré and Weidner (2020), we propose a complementary
systematic algebraic procedure to recover the model’s valid moments that we outline in the
next paragraph?.

Methodology. We call a transition function associated to a transition probability

yt+1|y§_(p_1)

T, (A;, X;) any moment function ¢g(Y;, Y0, X;) satisfying:
E [¢00 (Y“ Yiosz‘) | YiO“Xi7 Az:| _ Wft+1‘yt—(P—l)(Ai’ Xz) (2)

In panels of sufficient length, transition functions happen to exist for certain transition
probabilities in several DFEL models of interest and are typically non-unique. This non-
uniqueness motivates a two-step approach to obtain valid moment functions fulfilling (1). In
Step 1), the researcher computes the model’s transition functions. Foreshadowing results
for the binary case with p lags (e.g AR(p) logit models), a minimum of 7" = p + 1 periods
will generally be required to obtain unique transition functions for a subset of transition
probabilities in period t = p. However, this alone does not yield moment equality restric-
tions on 6y, for which an additional period is necessary. With T" > p + 2, we explain how
to systematically construct distinct transition functions associated to the same subset of
transition probabilities across periods ¢t € {p+1,...,T —1}. The key ingredient is the use of
partial fraction decompositions for rational fractions tailored to the structure of logit tran-
sition probabilities (see Appendix Lemmas 6-7). This leads us to Step 2) where we simply
take differences of two transition functions associated to the same transition probability to
automatically obtain valid moment functions.

Intuitively, this two-step strategy emulates familiar fixed effects differencing schemes in
panel data models with strict exogeneity. That is finding two moment functions whose
conditional expectations given (Y, X;, A;) produce the same function of the fixed effects
h(A;, X;) and taking their difference. The relevant choices of h(A;, X;) are inherently model

specific but in binary logit models, any such function happens to be a linear combination

3We refer readers to Dobronyi et al. (2021) and Kitazawa (2022) for alternative algebraic approaches.
The first paper uses the full likelihood and focuses on the AR(1) and instances of the AR(2) model. The
second paper has a transformation approach adapted to the AR(1) model.



of transition probabilities. This insight explains our particular focus on transition functions
and transition probabilities.

Notations. We reemphasize the use of the shorthand Z!, = (Z;, Ziy_1, ..., Z;s) to denote
the history of Z;; between periods s and t. We let A denote the first-differencing operator
so that AZ; = Z;; — Zy 1 and make use of the notation Z;, = Z;; — Z;s for s # t to accom-
modate long differences. We use 1{.} for the indicator function; Im(f), ker(f), rank(f) to

denote the image, the nullspace and the rank of a linear map f.

3 The AR(1) logit model

We begin our analysis with the textbook AR(1) logit model with fixed effects
Vie=1{Yi—1 + X; B0 + A —ex >0}, t=1,...,T (AR1)

Here, Y = {0,1}, X C RE>. A =R, Oy = (70,5;) € R x RE=_and Y = Yjy. The logistic
assumption on €;; implies the transition probabilities
1

1 _|_ eAi+X~£t+lﬁO
e’YO +Xz{t+160 +A1

70(A X)) = P(Yiger = 0]V = 0, X, A;) =

7Ttl|1(AiaXi) =PYun=1Yu=1,X;,A) =

1+ e’Yu-&-X{Hlﬁo-&-Ai

with 7 °(4;, X;), 70 (A;, X;) redundant since 7' (A4;, X;) = 1—ml' (4;, X;) for all (k,1) € V2.

3.1 The number of moment restrictions in the AR(1)

We start out by enumerating the moment restrictions implied by the model. This will provide
a means to assess the exhaustiveness of our two-step approach. To this end, let &, , r denote
the conditional expectation operator mapping any function of the outcome variable Y; to its

conditional expectation given Y;o = 30, X; = x and the fixed effect A;, i.e

T
Eyoa,T" R” > R¥

O(5y0,2) —> E [0(Yi, yo, 2)|Yio = yo, X; = 2, A; = ]



Eyo.wr 18 one formulation of the parametric component of the model in that for any y € Y7,
Evo T []1{ = y}} yields the conditional probability of observing history y for all possible
values of the fixed effect, i.e: &y or [1{. = y}] = P(Y; = y|Yio = vo, X; = x, A; = .) where

T ’
P(Y; _ y|Y;0 _ yoni _ f,Az‘ _ a) _ H et (Vovt—1+ziBo+a)

t=1

Va € R. We have the following

1+ewoyz_1+z£ﬁo+a )

result,

Theorem 1. Consider model (AR1) with T > 1, initial condition yo € Y and covariates
xr € XT. Suppose that for any t,s € {1,...,T — 1} and (y,7) € V%, vy + 50 # Y07 + .5
ift #s ory#y. Then, the family Fyo o7 = {1, ng‘yO(., ), (W?'O(.,w), 7rtm(., x))f:_ll} of size
2T forms a basis of Im(Ey, ».r) and dim (ker(y, 7)) = 27 — 2T

Theorem 1 establishes that the linear span of transition probabilities provides a minimal
description of the parametric part of the model: 27 histories are possible but their conditional
probabilities can all be written with just 27" basis elements. This follows from the observation
that when the quantity ~voy;—1 + x50 in each transition probability differ across time periods
*  the conditional probability of each history y € Y7 is a ratio of polynomials in exp (a),
where the numerator has lower degree than the denominator, and the later is a product of
distinct irreducible terms. A sufficient condition for this is that vy # 0 and that one regressor
is continuously distributed with non-zero slope. In turn, standard results on partial fraction
decompositions ensure that this ratio can be expressed as a unique linear combination of
transition probabilities. This implies Im(&,, ».7) C Fy, 1. To establish the reverse inclusion,
we leverage upcoming results that prove that the transition probabilities live in Im(&,, ,.7)
as expectations of transition functions.

Importantly, since ker(&,, , 1) is the set of valid moment functions verifying equation (1),
Theorem 1 tells us that the AR(1) model features 27 — 2T linearly independent moment
restrictions in general. This is a consequence of the rank nullity theorem. The fact that
2T — 2T moment conditions are available for the AR(1) appeared initially as a conjecture

in Honoré and Weidner (2020) and was later established by Kruiniger (2020) and Dobronyi

4This condition may be violated if for example v # 0 but 2}y = 2%,30. However, if we let 7, = {s # t :

x} B0 = x5}, one can show using similar arguments on rational fractions that{ﬂg‘o(a, x), w;‘l (a, x)} will
s€T;
) N 1 Zel
be replaced by {W?lo(a, x)d, W?‘l(a, m)f} in the family F,, , 7 of Theorem 1. Since |Fy, . 7| is unchanged,
j=2 . ‘

the number of linearly independent moment functions is unchanged.



et al.

(2021) using different arguments from here. They did not emphasize the role of the

transition probabilities. Our ideas extend naturally to the case of arbitrary lags - since the

transition probabilities remain rational fractions - which was hitherto unresolved. We discuss

this extension in Subsection 4.1.

Remark 1 (Counting moments in logit models). Decomposing conditional probabilities of

choice histories into a basis can be a useful device to infer a lower bound on the number

of moment restrictions in logit models. Furthermore, if these basis elements are shown to

belong to the image of the conditional expectation operator, this lower bound equals the

exact

number of moment restrictions.

In the static panel logit model of Rasch (1960), 79 = 0 and we have (., x) =
1-— 7'('?'0(., x). Thus, provided that =8, # x5, for all t # s, For = {1, (W?‘()(., :c))f:’ol}
spans the image of the conditional expectation operator. This implies at least 27 — (T'+
1) moment restrictions. In fact, this is precisely the total number of moment restrictions

by Remark 2 which gives the transition functions associated to each element of F, 1.

In the Cox (1958) model, 79 # 0 but Sy = 0 and the transition probabilities are
m(a) = 7 and 7'l'(a) = % (or equivalently 7% (a) = =) In this case,

_ \T-1
the family F, r = {1, <7T0‘0(.)J, 7r0|1(.)3> ,ﬂoyo(.)T} which consists of powers of the
j=1
time-invariant transition probabilities spans the image of the conditional expectation
operator. Since |F,, r| = 2T, the model produces at least 27 — 2T linearly independent

moment restrictions.

Having clarified the total count of moment restrictions in the AR(1) logit model, we next

discuss how to construct them with our two-step procedure.

3.2

3.2.1

Construction of moment restrictions in the AR(1)

Intuition from the case with no regressors

We first explain our approach for the simple pure AR(1) model

Yie = oY1 +Ai—ex >0}, t=1,...,T (AR1 pure)



studied by Cox (1958), Chamberlain (1985) and Magnac (2000). These papers established
the identification of 7y for 17" > 3 via conditional likelihood based on the insight that
(Yo, tT:_ll Y, Yir) are sufficient statistics for the fixed effect. Our methodology is con-
ceptually different as we seek to directly construct moment functions verifying equation (1).
Here, the transition probabilities are time invariant and given by

ek('YOl'f‘Ai)

Wk”(Ai) =P(Yi1 =k|Yu =1, A;) = Vi, k)e)y

1+ evol+4;’

Step 1). We begin by deriving the transition functions for 7°°(4;) and 7'(4;). A nat-
ural starting place is to investigate the case T' = 2, i.e 2 periods of observations after
the initial condition. Recalling definition (2), we search for gbe *(Yia, i, Yi), respectively

é‘l(Yiz, Y;1, Yio), whose conditional expectation given (Yjg, A;) yields 7%°(A;), respectively
7l (A;). For the purposes of illustration, let us derive qﬁ(, ( Yia, Yi1, Yio) step by step. By

Bayes’s rule:

E [ 2'0(5/;2,3/;1, Yio) | Yio = yo, Ai = a]

- Z Z P(Yi = yo|Yi = y1, A = ) P(Yi = n1|Yio = yo, Ai = )" (42, Y1, %)
y2=0y1=0
eloyota elota 0[0 1 000
T 1+ evowota (1 —eora®o (L L) + 26y (0.1, o)

1 e’ 0\0 1 0|0
1,0, 0.0
T 1 + eroyota <]_ + ea ( yO) 1+ e0 ( y Uy Y 0)

where the second equality uses the logistic hypothesis. By quick inspection, we see that the
terms in the first parenthesis have (1 + ¢%%?) in their denominator unlike 7°°( A;). Because
—e™ is not a pole of 71°(4;)°, we conclude that ¢0|0(1 1yo) = gbe °(0,1,40) = 0. This first

deduction leaves us with

1

00 /v : : - o o et 0[0 1 0|0
E /] (1/;,27}/;17}/7:0>| }/;0 —iUO;Az =a| = 1+670y0+a (1+€a ( 0 yO) 1+€ (0 0 yO))

Now, since 7%°(A;) does not depend on gy, we must cancel the denominator (1 + e¥vo+a),

To achieve this, we must set: ¢2|0(1,0,y0) = C’Oewo,¢g|0(0,0,yo) = () for some constant

5A pole of a rational function is a root of its denominator. Formally, we are substituting v = e® and we
are extending 7°/°(u) to the real line.

10



Co € R\ {0}. Then,

1
E[O'OY;,E,YZ- Yio = o, A =a| = C
90( 2, X41 0)| 0= Y a 01—1—6“

and Cy = 1 is the appropriate normalization to obtain the desired transition function. Of
course, the exact same logic applies for ¢61,(‘)1(Y;2, Yi1,Yi) and 7!l (A4;).
This short calculation reveals a useful principle for the general case T > 2. We learned

that we can search for functions of three consecutive outcomes gb];'k(Y;tH, Yit, Yii—1) such that:
k|k klk
¢9 <}/t£t+17 Y;ta }/;t—l) - ]]-{}/;t - k}¢9 (Et-‘y—b k7 }/tit—l)

E ]g(l)k(yitﬂa Yit, Yie-1) | Y,-O,Yitl—l, Ai] = Wklk(Ai)

The first restriction is a functional form that eliminates terms with inadequate poles after
taking expectations. The second restriction is a normalization condition to match the desired

transition probability. Following this argument, we arrive at the expressions in Lemma 1.

Lemma 1. In model (AR1 pure) with T > 2 andt € {1,...,T — 1}, let

00 (Vivg, Y, Y1) = (1 = Yy )e?Ves Yo

éll(Y;H—b Y;b Y;t—l) = Y;‘te’Y(l_YitJrl)(l—Yit,l)

Then:
- 1
E [ 2L0(Kt+1,Y;t7Y;t71)’Y;07Y;t1 1aAi:| = 7TO|O(A1') - 1+ e
11 t—1 11 e
E [ 0o (}/;t+17 }/:L'ta }/;'tfl)’}/;’o’ }/;1 ’AZ:| -7 (Al) N m

Step 2). The second step in the agenda is the construction of valid moment functions.
By virtue of the law of iterated expectations and since the transition probabilities of the
model are time-invariant, a natural way to achieve this is to consider the pairwise difference of

Z'k(YitH, Yit, Yii—1) and ¢Z|k(Yi5+1, Yis, Yis—1) for any feasible s # t. Nevertheless, alternative

differencing schemes are possible and we formally discuss one that can further accommodate

arbitrary regressors in Proposition 1 below.

11



3.2.2 The general case with regressors

We move on to the general AR(1) logit model characterized by equation (AR1).

Step 1). Since the transition probabilities 7T,?|0(Ai, X5), Wg‘l(Ai, X;) retain the same func-
tional form as in the simple pure model, the same calculations described above lead to the
transition functions in Lemma 2. The only predictable change is the appearance of an extra

term +/ — AXJ, ;3 which accounts for the presence of covariates in the model.

Lemma 2. In model (AR1) withT > 2 andt € {1,...,T — 1}, let

8‘0<Y;t+17 Yvita Yvitflg XZ) = (1 — Y;-t)eyit'H (7Yit_1—AXth+1B)

é‘l(Y;tH, Yie,Yie1, Xi) = }/;'te(l_YiH'l)(’Y(l_}/it_l)+AXz{t+1B>

Then:

Ny v Ve XY VL X Al = 2904 X)) = 1
E|:¢90 (sztJrlayvztayvztflaXz)’KmY;l 7X17AZ] =Ty (A’HXl)_ 1+6Ai+X1{t+160

6’70+X1{t+1,80+14i

1|1 — 1|1
E (65 (Yien, Yo Yios, X0 Voo i X A =i (40 X0 = —— ey

At this point, it is important to highlight that unlike previously, the transition probabilities
are covariate-dependent. The upshot is that the naive difference of qﬁlglk(YgtH, Yie, Yiee1, Xi)
and gbl;lk(Y;S“, Yis, Yis—1, X;) for s # ¢ no longer leads to valid moment functions in general.

Indeed, while Lemma 2 ensures that
Elo v, . v. v . X |k __klk K|k
/] ( it+1y Laty Lat—1, 1) ] (}/;S+17KS?KS*l?Xi)‘KO7Xi7Ai = Ty (AHX’L) - 7-‘-3 (AHXZ)

clearly, Wf‘k(Ai,Xi) - Wf'k(Ai, X;) # 0 when X/, 5 # X/,,100 °. Thus, a different logic is
required in the presence of explanatory variables other than a first order lag. Our proposal is
to construct new transition functions that we denote (p, distinct from qbﬁ'k(Y;tH, Yie, Yiee1, Xi)
but mapping to the same transition probabilities 7réC lk(AZ-, X;). Their construction displayed

in Lemma 3 is achievable as soon as T" > 3 and is valid for any type of covariates. It heavily

relies on two ingredients: i) the rational fraction structure of the transition probabilities with

SA matching strategy a la Honoré and Kyriazidou (2000) may still be applicable if X311 = Xjs11.
However, this is known to lead to estimators converging at rate less than v N for continuous covariates and
it rules out certain regressors such as time dummies and time trends.

12



respect to exp(A4;), and ii) suitable partial fraction decompositions described in Appendix
Lemma 6. The latter relate to the hyperbolic transformations ideas of Kitazawa (2022). In
the sequel, we shall see that thoses insights carry over to other DFEL models, including

AR(p) logit models for arbitrary p > 1.

Lemma 3. In model (AR1) with T > 3, for allt,s such that T —1>1t> s> 1, let:

1s(0) = 7Yie 1 + X3

H?‘O(@ = Xz{t-klﬁa f@i‘l(@) =7+ X£t+15

| \
W) =1 — O gy — 1 — =0 O-s)

Y

and define the moment functions:

JOYELYE LX) = (1= Vi) + w2 (0)Yiedy (Yiesn, Yar, Yieo1, Xo)

SN YE LX) = Vi 4 wlh (0)(1 = Yig) by (Yarsn, Yar, Va1, Xo)

Additionally, if T > 4, for any t and ordered collection of indices s{, J > 2, satisfying

T—1>t>s >...>s;>1, define analogously

SOYEEL Y LY LX) = (1= Yis,) e (0)Yie, GO (Vi v

S50

Yo X))

it—17 Tis1—10 o sy —1

1|1 s s 1|1 1|1 s Sj—
oYL Y Y XG) = Y, w0l (0)(1 = Yie )G (VL Y YL X

isy_1—1»

Then for all k € Y

0

k|k s s— K|k
E [Cel (Yitn, Vi1, X)[Yio, Vi3 laszAz‘] = m (A, X)
k|k s s Sj— k|k
B (G Vi Y XY, Vi T X A = (A X0,
Step 2). Provided T' > 3, the difference between any transition functions associated to
the same transition probabilities in periods t € {2,...,T — 1} constitutes a valid candidate

for (1) by iterated expectations. Proposition 1 gives a particular family of valid moment

functions that we have found to be complete.

Proposition 1. In model (AR1), for allk € ),
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of T'> 3, forallt,s such thatT —1>t>s>1, let

klky t+1 yrs
[/ (Y;tflay

is—19

k|k k|k s
X)) = ¢y (VLX) - YL YL X,

is—17 “*1

if T >4, for any t and ordered collection of indices si, J > 2, satisfying T —1 >t > s; >

o> 87>1, let
k|k t+1 S1 sy o k|k t+1 k|k t+1 S1 sy
0 (}/;t—17}/;51—17".7‘}/7;SJ—17X/L') — % (Y;t—lvxi) Y] (Y;t—lvy;sl—lv'"7}/;51—17)(1')7

Then,

k|k s
E [1?9(! (}/zitb }/isfh

X) Yo, Vi Xy, Ai| = 0

k‘|k‘ t+1 81
E |:77Z)90 (}/;'t—].’ }/jisl—].’ .

-'7YSJ Xi)|Y;07)/;iJ_17Xi7Aii| =0

isy—12

Indeed, note first that this family has cardinality 27 — 27" which by Theorem 1 is precisely
the number of linearly independent moment conditions available for the AR(1). To see this,
notice that for fixed (k,Yi) € V?, and a given time period ¢t € {2,...,T — 1}, Proposition

1 gives a total of: Zf;} (tzl) = 271 — 1 valid moment functions. Indeed, we get (tzl)

possibilities from choosing any s in {1,...,¢ — 1} to form z/zglk(Yliﬂ, 5 _1,X;). To that,

we must add another }:; (t_ll) possibilities from choosing all feasible sequences s{ with

t—1> s >8> ...> 55 >1toform zﬁg‘k(Yiiﬂ,Y‘”

1, Y 1, X;). Summing over

isy—1r<%i
t=2,...,T — 1 and multiplying by 2 to account for the two possible values for k delivers
the result: 2 x 3/ 'S0 (1)) = 2 x 3512 — 1) = 27 — 2T, Second, the family
appears linearly independent. It is readily verified for T" = 3 since the two valid moment
functions produced depend on distinct sets of choice histories. Unfortunately, this argument
does not carry over to longer panels, but we verified numerically that the linear independence
property of this family continues to hold for several different values of T > 4. This evidence
suggests that our two-step approach delivers all the moment equality restrictions available

in the AR(1) logit model.”

Remark 2 (Static logit). If 79 = 0, model (AR1) specializes to the static panel logit model

"This is not all the identifying content of the AR(1) specification since we know from Dobronyi et al.
(2021) that the model also implies moment inequality conditions.
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of Rasch (1960). For that case, Lemma 2 gives two moment functions for 7" = 2,

gIO(Yéz,Ym,Xi) = (1 — Yy)e YihXs
;'1(162, Y, Xi) = y’ile(l—mz)AngB

eXizBo+A;
14eXizBotAi "

such that E O‘O(Yﬁ,, i)|Xi7Ai] = and E[ ;‘l(yﬁ’ i)|Xi’Ai] - ft

,—
14 eXi2PotA;

follows that a valid moment function with two periods of observation is

Wo(Yia, Yir, Xi) = o (Yia, Yir, Xi) — (1 — ¢ °(Yaa, Yir, X3))
= (1= e 2%6%) (Y (1 = Vi) eAXe — (1= Vi)Yo

which is proportional to the score of the conditional likelihood based on the sufficient statistic

Yi1 + Yie (Rasch (1960), Andersen (1970), Chamberlain (1980)).

3.3 Semiparametric efficiency bound for the AR(1)

Honoré and Weidner (2020) gave sufficient conditions to identify 6y = (7o, 5))" in the AR(1)
model with 7" > 3. Two natural follow-up questions arise: i) how accurately can 6y be
estimated in that case, i.e what is the semiparametric efficiency bound, and ii) which esti-
mator, if any, attains it. This section addresses these questions which to our knowledge have
remained unresolved, particularly in the case where covariates are present.

No covariates with T = 3. In a corrigendum to Hahn (2001), Gu et al. (2023) confirmed
that the conditional likelihood estimator is semiparametrically efficient for 7" = 3 in the
pure AR(1) model. This result, when viewed through our moment-based framework, reveals
useful insights. Specifically, with some algebra, one can show that the conditional score for

the state dependence parameter 6y = 7, is given by

1
(1 + e%)(eﬂo — )

(7?0‘0( i35 Yi2, Y1, Vi zo)—i-lﬁl'l( 13,3@2,}@1,3@0))

where we ( i3, Yio, Yi1, Yio) and wg ( i3, Yio, Yi1, Yio) are the moment functions of our Propo-
sition 1 for the no-regressor case. This expression implies an alternative interpretation of

the optimal estimator as the efficient GMM estimator for E [¢90( i3, Yio, Yi1, Z0)|Y,0} =0,
where 1g(Yjs, Yia, Yi1, Yio) = (¥e(Yis, Yiz, Yi1, Yio), ¥e(Yis, Yiz, Yi1, Yio))'.
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The case with covariates and arbitrary T. The pure AR(1) model insights nat-
urally suggest that the efficient GMM estimator for the conditional moment restriction
E [”¢9<Y;0, Y;, XZ-)|Y;0,X1-] = 0 could achieve semiparametric efficiency. Here, 1y (Y;0, Y;, X;)
represents the (27 — 27")-vector gathering all the valid moment functions of Proposition 1°.

We verify this conjecture in Theorem 2 below. To set out the result, assume 6y is identi-

fied from E [¢g, (Yo, ¥;, Xi)[Yio, Xi] = 0 and let D(Yip, X;) = E [M Yo, X;| and

a0
Y(Yi, X;) =E [Wo(yz‘o, Y, Xi)e, (Yio, Yi, Xi)'|Yio, Xi]. Then we have the following result:

Theorem 2. Consider model (AR1) with T > 3 and suppose i) E[X;X]] < oo, i)
the support A, C R of the distribution of heterogeneity q(.|Yio, X;) contains an accu-
mulation point, 1) the matriz E [D(Yio,Xi)’E(Y;O,Xi)*lD(YiO,Xi)} exists and 1s monsin-
gular. Then, the semiparametric variance bound for 0y is finite and given by Vo =

E[D(Yio, X:)"S(Yio, Xi) "' D (Yio, Xi)] 1.

Assumption i) is a standard square integrability condition for covariates. Assumption ii)
is a richness condition weaker than requiring A, = R but sufficient to ensure that no ad-
ditional information can come from exploiting the support of heterogeneity (see Arganaraz
and Escanciano (2023)). Assumption iii) is a local identification condition analogous to
Davezies et al. (2023) in the context of static models. Theorem 2 confirms that opti-
mal GMM estimation of 6, would utilize the efficient moment function 1/1§f f (Yo, Y:, Xi) =
D(Yio, X;)"2(Yio, Xi) 2y(Yio, Vi, X;). Its proof involves verifying the conditions for an ap-
plication of Theorem 3.2 in Newey (1990) and hinges on two key properties. First, we show
that the orthocomplement of the nonparametric tanget set - the space onto which the score
for 6 is projected to determine the element characterizing the variance bound, i.e the effi-
cient score - is the set of valid moment conditions verifying (1) (up to terms in (Yo, X;)).
Second, we leverage the fact that the AR(1) only admits a known finite number of linearly
independent moment restrictions by Theorem 1. Together, these features imply that the
efficient score is the conditional linear predictor of the score for 6 on ¥y (Y, Y:, X;) given
(Yio, X;), aligning with w;f ! (Yio, Y:, Xi). We note that these properties are not unique to
AR(1) logit model; they hold, for instance, in AR(p) logit models with p > 1 (see Theorem

8More generally, any family of 27 — 27T linearly independent valid moment functions could be used.
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3). This suggests that Theorem 2 could, in principle, be extended to other DFEL models

where 0 is identified by the available moment conditions.

4 The AR(p) logit model with p > 1

Allowing for higher-order lags is often desirable in empirical work to model persistent stochas-
tic processes and improve model fit (e.g, Magnac (2000) on labour market histories, Chay
et al. (1999) and Card and Hyslop (2005) on welfare recipiency). In this section, we charac-

terize the form of the moment restrictions available in AR(p) logit models

p
}/;t:]l{ZVOTY;tT+X;t60+Az_€zt20}7 tzl)aT (ARp)
r=1

where the lag order p > 1 can be arbitrary. This generalization has not been thoroughly
addressed in the literature ? and allows to test lag misspecification given enough time periods.
Here, Y = (Yi_(p-1), ..., Yio1,Yio) € VP, X CR™ 6y = (v, 8)) € R? x RE+ and A =R.
The logistic assumption on €; implies 2P non-redundant transition probabilities given by

ek(zle ’YOTl'r +X1{t+150 +Az)

kP
e 1 (Ai’ Xz) - P(Y;H_l - k’|Y;t B ll’ o 7Y;t7(p71) B lp7 Xi, Al) B 1+ 625:1 Yorlr+X{, 11 Bo+Ai

for (k, 1y, ...,1,) € P+,

4.1 The number of moment restrictions when p > 1

Based on simulation evidence, Honoré and Weidner (2020) conjectured that AR(p) models
possess 27 — (T + p — 1)2P linearly independent moment conditions in panels of sufficient
length. We prove this claim in Theorem 3 and establish that no moment restrictions for
the common parameters exist when 7" < p + 1. To introduce the result formally, it is again

convenient to consider the conditional expectation operator 8;§)x o describing the model, i.e

T et (Ele ’Y()rytfr-i-xéﬁo-i-a)

(») _ _ - 0_ .0 v _ )
gy07$,T []1{ — y}:| — P(K - ylx =Y 7Xz — :UyAz — ) =atr - 1 + GZ£=1 ’YOryt—T+x:fﬁ0+a

t

9Using Mathematica, Honoré and Weidner (2020) present moment functions for the AR(2) model up to
T =4 and the AR(3) model with 7"= 5 but no results are offered beyond these special cases.
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Then the following result holds:

Theorem 3. Consider model (ARp) with T > 1, initial condition y? € VP and covariates
xr € XT. Suppose that for any t,s € {1,...,T — 1} and y,5 € VP, vy + ;B0 # 747 + .50
ift #s ory #1y. Then, the family

-1
) voly° YLy Y0l (p1)
yO;pT_ 177T0 (‘71;)7 7Tt71 (,Z‘))
sly yi_leytfl

forms a basis of Im <5y(€)z T) and therefore

p T

,{<7Tiyl|iﬁ("“")>yfew}

t=2 t=p+1

Y92, T Y

1. IfT<p+1, rank (g(p> ) — 97 gnd dim (ker (S%’fﬂ)) —0

2. If T > p+2, rank <5§§?z7T> = (T'—p+1)2? and dim (ker <E;§)$T>> =27 —(T—p+1)2°
Theorem 3 generalizes Theorem 1, establishing that the conditional probabilities of all choice
histories are spanned by the transition probabilities, no matter the lag order. This result
hinges again on the rational fraction structure of logit probabilities and on the fact that the
transition probabilities of AR(p) models admit transition functions, a property set out in the
following section. One important practical implication is that fitting an AR(p) demands at

least 2(p—1) additional observations relative to an AR(1) (count p initial conditions followed

by T' = p + 2 waves of data against 4 total periods needed for an AR(1)).

Remark 3 (Beyond Logit). Theorem 1 and 3 could, in principle, be suitably extended to
other distributions for €;; beyond the logistic case, provided they induce a rational fraction
structure for the transition probabilities. Examples include mixtures of logistic distributions
(e.g Honoré and Weidner (2020)), and generalized logistic distributions (e.g Davezies et al.
(2023)). A rational fraction structure prevents the rank of the conditional expectation opera-
tor from growing as quickly as the number of choice histories, ensuring thereby the existence

of moment conditions for sufficiently large 7T'.

4.2 Construction of transition functions with p > 1

Having clarified that T" = p+ 2 is the minimum number of periods required for the existence

of identifying moments, we are now ready to address the issue of their construction. The
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blueprint generalizes that of the AR(1) model and can be summarized as follows:
1. Step 1)

(a) Start by obtaining analytical expressions of the unique transition functions for the
transition probability in period ¢t = p when T = p + 1 '°. Shift these expressions
by one period, two periods, three periods etc to get a set of transition functions

for period t € {p+1,..., 7 —1} when T'> p + 2.

(b) Apply partial fraction decompositions to the expressions obtained in (a) for ¢ €
{p+1,...,T — 1} to generate other transition functions mapping to the same

transition probabilities.

2. Step 2). Take adequate differences of transition functions associated to the same
transition probability in periods t € {p + 1,...,T — 1} to obtain valid moments that

are linearly independent.

Step 1) (a) is akin to how we started by getting closed form expressions for the transition
functions in period ¢ = 1 for T' = 2 in the one lag case and then deducted a general principle
for t > 2 (see Section 3.2.1). From a technical perspective, this is the only part of the two-step
procedure that differs from the baseline AR(1). Indeed, Step 2) is fundamentally identical
and Step 1) (b) is also unchanged for the simple reason that the transition probabilities
keep the same functional form as before. That is, a rational fraction in exp(A;). Hence, the
same partial fraction expansions apply. In light of those close similarities with the AR(1)
and in order to focus on the primary issues, we defer a discussion of Step 1)(b) and Step
2) to the Online Appendix.

Theorem 4 provides the algorithm to compute the transition functions for Step 1) (a)
for arbitrary lag order greater than one. It is based on the insight that we can leverage
the transition functions of an AR(p — 1) and partial fraction decompositions to generate the

transition functions of an AR(p). A simple example is helpful to illustrate the idea. Consider

10The fact that the transition functions in period ¢t = p are unique when T = p + 1 is a direct corollary
of Theorem 3. Otherwise, the difference of two distinct transition functions mapping to the same transition
probability would yield a valid moment which is a contradiction.
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an AR(2) with 7" = 3 (i.e 5 observations in total) and suppose that we seek a transition
function associated to, say, the transition probability 7T[2)|0’1(Ai, X;) = (1 + 6702+X£350+Ai> -
The first ingredient of the theorem is to view the AR(2) model as an AR(1) model where
we treat the second order lag as an additional strictly exogenous regressor. This change
of perspective is advantageous since we already know how to deal with the single lag case.
In particular, Lemma 2 readily gives the transition function ¢9 ( i3, Yio, Y1, Yio, X;) for the
transition probability W?'O’Kl(Ai,Xi) = P(Y;3 = 0]Y;2 = 0,Y;1, X, 4;) in the sense that it

verifies:
¢0‘0( Yis, Yio, Yi1, Yio, )|Y Y;laXzaA] S'O’Y’“(Ai,Xi)

This is an intermediate stage since qbg ( i3, Yo, Yi1, Yig, X;) does not quite map to the target
of interest; 7rg|O’Y“(AZ-, X;) depends on the random variable Y;; unlike 7rg|0’1(Ai, X;). To make
further progress, one would intuitively need to “set” Y;; to unity to make the two transition
probabilities coincide. We operationalize this idea by interacting ¢9 ( Yis, Yio, Yi1, Yio, X;)

and Y;; to achieve the desired effect in expectation:

E | Yagfy (Y, Yia, Yir, Yio, Xo)[¥?, Xi, Ai] = B [ Yamg ! (45, X))V, X, A,

Y Y X'’ 3 A
I - i
e Jo1 X0 T702 ;-1 1~0 i

1 + evo2+X[3B+A; 1 + eY01Yio+y02Yi—1+X]; Bo+A;

Here, the first equality follows from the law of iterated expectations. Then, the second
ingredient of the theorem is a partial fraction expansion (Appendix Lemma 6) to turn this
product of logistic indices into ng’l(Ai,Xi). This last operation is analogous to how we
constructed sequences of transition functions in the AR(1) model. It ultimately tells us that
the solution is a weighted sum of (1 —Y;;) and Yzlgbolo( Yis, Yie, Yi1, Yio, X;). Theorem 4 turns
this procedure into a recursive algorithm that computes the transition functions for any lag

order p > 1.

Theorem 4. In model (ARp) with T > p+1, forallt € {p,..., T — 1} and y} € Y? , let

p
kiﬂ‘yl (9) = Z VrYr + Xlt-i—lﬁ
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k+1

k+
kfl‘yl ZVTyT—i_ Z 77" it—(r— 1)+ z{t+1ﬁ7 ]{I:l,...,p—Q, pr>2
r=k+2
w_k(0) = Z%m_<r+k) + X 4B, k=1,...,p—1
r=1

k+1

iy} kyﬂy’fﬂ 0 0 o R 0 T
w5 gy = |1 = ¢ (O)—ue—1(0)) L — o= 0w (0)) Ch=1...p-1

and

‘ k+1
¢zl s (}/;t-‘rl)}/;t)Yt %p+]€)7X) -
[ vyt y1ly¥ t—1 (v
1
(1 — Y k) + wt ! (0) 0 ! (ifit—&—l’ )/zh Y t—(p+k—1)° Xz')}/it—k} X
_ ‘ o (1=y1) (1 =yr+1)
1 =Y — wi?l o (‘9) <1 - 31 . (Yz‘t+17th7Yt 1p+k 1) Xi )> (1— Y%t—k)} X
- ol " y1(1=yx+y1)
Voo £ w7 000 (Vi Vi YL X0 Ym] Y
: yilyy ™t y1ly§ t—1 ik
1= (1= Vi) — ™ (0) (1= 04 Vi, Yo Vi 10, X)) Yit_k} L k=1,...,p—1
where
glO(Y;t—i—ly Y, Y:zf& 1107 X)) =(1- Y;t)eiﬁtﬂ(%YitA—Zf:g NAY 11— AX], 4 B)
éll(YiHhYmYzi ;,X) Yz'te(kY’HQ(Vl(lfy”’l)Jer:QWAYZ’M*#AX’{”&)
Then,

[¢y1|y1( zt-{—le;t’Y;i %QP 1) i)|}/7207Y;tl_p7Xi7Ai:| _Wiﬂ'yl(Ai’Xi)

and fork=0,...,p—2

t—(p+k)’ i

+1 B
|:¢y1|yl (}/;t—i_l’ }/;t’ Yt 1 ) | YO 1 (k)+1 X,” A :| yl‘yl th(k+1)7"'7§/zt*(l7*1) (A“ X’L)

The remaining steps to complete the construction of valid moment functions are described
at length in the Online Appendix. The end product is a family of (numerically) linearly
independent moment functions of size 27 — (T + 1 — p)2P. By Theorem 3, this implies that

our two-step approach recovers all moment equality conditions in the model. We discuss
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how to potentially exploit these moment functions to identify 6y in the Online Appendix.

Remark 4  (Extensions). While the exposition emphasized model (ARp),
the methodology applies more broadly to models of the form Y} =
1 {g(Yit,l, o Y, Xt 00) + A — € > O}, where the lag order p > 1 is known and
g(.) is known up to #y. The crucial feature is the additive separability of the fixed effect.

Remark 5. (Average Marginal Effects) In applied work, there is often interest in certain

functionals of unobserved heterogeneity rather than on the value of the model parameters

per se. Average marginal effects (AMEs) which capture mean response to a counterfactual

change in past outcomes are one such example, and can be directly obtained as expectations

of our transition functions. To illustrate, consider the baseline AR(1) model with discrete

covariates X;;. We can define the average transition probability from state [ to state k in
t+1 _

period t for a subpopulation of individuals with covariate 27" = (x1,...,2441) and initial

condition gy as

" (yo, 28 = B | 1 (Xigr, A)) | Yio = yo, X5 = attl| = / i (241, a)glalyo, =41 da
D e
Eﬂ'f”(XZ,AZ)

where ¢(.|yo, 4t") denotes the conditional density of the fixed effect given (yo,z}™). The

AME is defined as the following contrast of average transition probabilities:
AME,(yo, #4*") = T4 (yo, 217) = T (o, 21™) = T (o, 24H1) = (1 = 117" (o, 21))

It is interpreted as the population average causal effect on Y;;,; of a change from 0 to 1

of Yy given (yo, 24t"). By Lemma 2 and the law of iterated expectations, we have that for

T>2andt > 1: I (yo, 2t = E [(blg(‘)k(y;t+lamtamtflei) | Yio = o, X3! = 37t1+1] ke,
implying that AM E,(yo, i) is identified so long as 6 is identified. A sufficient condition
for that is 7" > 3 and X;3 — Xj» having support in a neighborhood of zero (Honoré and
Kyriazidou (2000)). Aguirregabiria and Carro (2021) were the first to point out the identifi-
cation of AMEs in the AR(1) model. Theorem 4 shows that our transition functions can be

leveraged more broadly to recover AMEs in AR(p) logit models with p > 1. Naturally, this

insight extends to any average effect whose integrand can be expressed as a linear combi-
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nation of transition probabilities. This includes, for example, “average survivor functions”,

representing counterfactual probabilities of surviving s consecutive periods in the same state.

5 Moment restrictions for the VAR(1) logit model

We now turn our attention to multi-dimensional fixed effects models, focusing in this section
on the VAR(1) logit used in our empirical application. Readers will find the proofs of all
claims in this section and analogous results for the dynamic multinomial logit model in the
Online Appendix.

Let Yy = (Yiit,--»Yui) € Y = {0,1} denote the outcome vector in period ¢ with
M > 2. Let Xy = (X1 ;,..., X)) € X CRF x .. x RFM denote the vector of exogenous
covariates in period t and A; = (A4, ..., Ayi) € A =RM the vector of fixed effects. The
VAR(1) logit model is described by:

M
Ym,it =1 Z ’YOij},itfl + X;n,itBOm + Am,i — €m,it > 0 (VARl)

j=1

m=1,....M, t=1,...,T. It represents a natural extension of the baseline AR(1) logit
model for multivariate outcomes and has been applied to study the relationship between
sickness and unemployment (Narendranthan et al. (1985)), the progression from softer drug
use to harder drug use among teenagers (Deza (2015)), transitivity in networks (Graham
(2013), Graham (2016)) and more recently the employment of couples (Honoré et al. (2022)).
The initial condition is given by Yo = (Yi40,...,Yami0) € Y, and the logistic assumption

induces the transition probabilities:

k‘l M m Z;\il 'YOmjlj"!‘X:n,it_»'_lBOm“!‘A’m,i)
w0 (A Xi) = P(Yiey = k|Ya = 1, X, A) = [ |

€k (
1 1 + 62?i1 ’YOmjlj‘f'X;n’it_,_lBOm‘f'Am,i
m=

for all (k,1) € Y. Honoré and Kyriazidou (2019) studied the bivariate case and showed that
0y can be identified by a conditional likelihood approach if T' > 3 and the regressors do not
vary over the last two periods. Similarly to the AR(1) case, the alternative construction for
identifying moments below relaxes these restrictions on the covariates, thus allowing for the

inclusion of time effects and estimation of common parameters at v/ N-rate.
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Step 1) in the VAR(1) logit model has a nuance relative to its univariate counterpart:
according to our calculations, the only transition functions that seem to exist are those
associated to Wf |k(Ai, X;), for k € Y, i.e the probabilities of remaining in the same state.
The expressions of a first set of transition functions, available from T = 2, are presented in

Lemma 4. They can easily be derived by applying the reasoning outlined in subsection 3.2.1.

Lemma 4. In model (VAR1) with T > 2 and t € {1,...,T — 1}, let for allk € Y
’;|k<Y;t+1,}/;t,§/;t 1) )— ]I{th = k:}e m=1(Ymit+1— km)(Z] 17’”7(1@if*1*kﬂ')*AX;n,it+15m)

Then:

km, (231\11 Yomjk; +X;n,it+1ﬁ0m +Am,i)

M
- e
Cbk'k( zt+1,Y;t,Y;t—1aXz')|Yi07Y?1 1,X,-,Ai] = Wflk(AiaXi) - H 1

+ ezg‘]\il Yomjkj +X;n,it+160m+AT"ai

Next, we can appeal to the second partial fraction decomposition formula in Appendix
Lemma 7 to guide the construction of another set of transition functions when 7" > 3.
The idea is as usual to utilize the (multivariate) rational fraction structure of the transition
probabilities. As is clear from Lemma 5, the resulting transition functions are multivariate

analogs of those presented in Lemma 3 for the AR(1) model.

Lemma 5. In model (VAR1) with T > 3, for allt,s such that T —1 >t > s> 1, let for all
me{1,...,M} and (k,1) € V*: pns(0) = X1 Vg Vjis—1 + m,sﬁm,

R0 = S0 ok KysaBonr w(0) = 1= GO O] o define the
moment functions

k|k s k|k k|k
ML Y LX) = 1Y =k} + Y wi (0)1{Yi = Doy F (Vi X))
leY\{k}

Additionally, if T > 4, for any t and ordered collection of indices s{, J > 2, satisfying

T—1>t>s >...>s;>1, define analogously

o (L YL Y X)) = 1Y, = K]
k|k k|k s SJ—
+ > wi OV, = DG YL Y YT LX)
leV\{k}
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Then

k|k s
E [Ceol (Y;fft}v Yis—h

Xz‘)|Yio,Y£_1,Xi,Ai] = Wflk(AiaXi)

E [ v v

o is1—17°

.. aYSJ Xz)|}/;07 }/ﬁj_la XZ'7 Az:| = Wf“c(AZ) XZ)

isy—1

For Step 2), a family of linearly independent valid moment functions is readily available
by adequately repurposing the statement of Proposition 1 to the VAR(1) case, i.e by updating
the expressions of gb’glk() and Cg |k() according to Lemmas 4-5. To conserve on space and

avoid repetition, we leave this simple exercise to the reader.

Remark 6 (Non-exhaustiveness). Although it can be verified numerically that, for 7" = 3,
our two-step strategy based on transition functions accounts for all moment restrictions
in both the VAR(1) specification and the dynamic multinomial logit model (see Online
Appendix), it no longer holds for "> 4. One can show that there exists functions of the fixed
effects beyond linear combinations of transition probabilities that we can difference out using
a broader class of “generalized transition functions”. Importantly, the resulting moment
conditions contain additional information on 6, unlike in the binary case. Characterizing
the complete family of moment conditions is a complex problem that we address for the

dynamic panel multinomial logit model in Dano et al. (2025)

6 Empirical Illustration

In this section, we apply our methodology to analyze the dynamics of drug consumption
among young individuals in the United States. The substantive question is whether the
observed persistence in drug use and the progression from soft to hard drugs among youth,
as documented in studies such as Deza (2015) ') stem from causal state dependence (within
and between drugs) or from latent traits predisposing individuals to illicit substance use.

To investigate these issues, we employ the the National Longitudinal Survey of Youth

1Ty fix ideas, in the NLSY97 dataset, the empirical probability of consuming a substance in year ¢ + 1
conditional on consuming it in year ¢ averaged over ¢ = 2001, 2002, 2003 is: 0.82 for alcohol, 0.6 for marijuana,
0.4 for hard drugs. Likewise, the average empirical probability of consuming hards drugs in ¢ + 1 conditional
on consuming marijuana in ¢ over the same periods is approximately 0.16. In contrast, the average empirical
probability of consuming hards drugs in ¢ + 1 conditional on not consuming marijuana in ¢ is only 0.02.
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1997 (NLSY97) which is a panel dataset of 8984 individuals surveyed on a diverse range
of subjects, including drug-related matters from 1997 to 2021 2. We concentrate on a
subsample of four waves, spanning from 2001 to 2004. This subsample provides insight
into the behavior of young people between the age of 16 and 22 in 2001 to 19 and 25 in
2004. We examine the statistical association between three outcome variables, namely the
consumption of alcohol, marijuana and hard drugs, derived from respondents answers’ during
annual interviews. Upon retaining those providing answers in all four waves, our sample
consists of N = 6461 individuals. In the spirit of Deza (2015), we model the relationship

between the consumption of each substance as a trivariate VAR(1) logit model:

3
Yo =1 Z Yom; Yjit—1 + Bomageir + domcollege; + Ap i — €t > 0
=1

m € {1,2,3} (1=*“alcohol”, 2=“marijuana”, 3=“hard drugs”), t = 1,2,3 where t = 0
corresponds to the year 2001. The state-dependence coefficients Yo, (within) and yo,,;, m #
J (between) are the main coefficients of interest in the 15-dimensional vector of common
parameters 0. We are particularly concerned about the sign and the statistical significance
of 732, i.e the so-called “stepping-stone” effect of marijuana on hard drugs. The covariate
age;; denotes the age of respondent ¢ at time ¢, and college;; is a dummy variable indicating
enrollment in a college degree. It captures the possibility that college represents a drug-
friendly environment'. Deza (2015) parameterizes both the latent permanent heterogeneity
A; and the initial condition Yjy to estimate the model by maximum likelihood. We leave
these components unrestricted and exploit the valid moment functions presented in Section
5. We specifically use six of the eight valid moment functions available: g ‘k(ij, Y, X;)
for k € {(0,0,0),(0,1,0),(1,1,1),(1,1,0),(1,0,1),(1,0,0)}. The other two corresponding
to states k € {(0,0,1),(0,1,1)} are null for over 99.5% of our sample and were dropped to

12The views expressed here are those of the author and do not reflect the views of the Bureau of Labor
Statistics (BLS).

13An earlier version of this paper examined a similar model, replacing college enrollment with the ratio
of state-level admissions to treatment centers for drug m in state ¢ and year ¢ to the national counterpart
in the same year, following Deza (2015). The results, comparable to those in Tables 1, showed statistically
insignificant effects for these alternative regressors. Moreover, constructing these regressors required access
to restricted BLS data, which complicated the analysis and limited replicability without providing additional
insights. These challenges motivated the adoption of the slightly different specification considered here, which
relies on publicly available data.
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mitigate noise in estimation. Next, we select a constant, the initial condition Y, age; and

collegey; in all time periods to form the 60 x 1 moment vector

000 (0,0,0)
LERERS
W OO Y X) !
(1,1,1)[(1,1,1) '
,1, ,1, YS,Yl;Xi YO
me(Vi, Y, X;) = %1 1,0)/(1,1,0) ( 1; li) ) © l 3
¢9 L0 L (Y;I,Y;O,X) age;;
¢@101 101(yﬁ’y%’)() coUegeiﬂ
¢®100 100(}? Y X))

With my(Y;, Y, X;) in hand, and given the number of overidentifying restrictions, we then

consider the empirical likelihood (EL) estimator 6 solution to

N
malenm subject to Zm =1, meg(}@,Yio,Xi) =0
i=1

(Qin and Lawless (1994)), motivated by much work documenting the better small sam-
ple properties of EL relative to GMM (e.g Imbens (1997) in a panel context). Notably,
Newey and Smith (2004) showed that EL has relatively low asymptotic bias which does
not grow with the number of moment restrictions in contrast to GMM. Also, EL is effi-
cient and avoids arbitrary choices of initial consistent estimator and weight matrix as in
2-step GMM (Imbens (1997)). The downside of EL relative to GMM as is well known
is computational, demanding in the above formulation to solve a constrained optimization
problem with N + dim(#) unknowns compared to an unconstrained problem with dim(6)
unknowns for GMM. However, this was not an issue for this particular application: solv-
ing for 0 was a matter of a few minutes using Julia on a modern computer. Under suit-
able regularity conditions (Newey and Smith (2004)), the EL estimator is normally dis-
tributed with: \/N(é — 90> N N( ( 1M) 1), where M = E [%&,}/’Q’Xﬂ and
Q = E [mg, (Y;, Y, Xi)ma, (Y3, Y%, X;)']. Efficient estimators of M and € are given by M=
SN a2 EXD and Q = SN wamg (Vi, YO, Xiymy(Vi, Y2, X,)' where 7, i = 1,..., N are

the EL probabilities.

Table 1 presents the EL estimates for the trivariate VAR(1) logit model in columns (I),
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(IT), (III). For comparison, columns (IV), (V), (VI) report a random effect (RE) estimator
akin to Deza (2015) '* while columns (VII), (VIII), (IV) display the “naive” logit maximum
likelihood estimator (MLE) which fits the same model but neglects the presence of fixed
effects. The first observation is that, in line with conventional wisdom, EL estimates for
the state-dependence parameters within drug, =11, 722, 733, are all positive and statistically
significant. There is a sharp contrast in the magnitude of these estimates relative to the
other two estimators however. The naive MLE largely overestimates the amount of within
state-dependence, yielding coefficients that are comparatively three to five times larger. In-
tuitively, this may be rationalized by the fact that it misinterprets the serial correlation
produced by the fixed effects as evidence of state dependence. The RE estimator acts as an
intermediate case between the other two as can be seen in columns (IV)-(VI). This behavior
is not unexpected to the extent that RE accounts to some degree for the presence of unob-
served heterogeneity. We note nevertheless that the role of within state dependence seems
overstated by this approach.

Second, EL estimates in column (III) indicate a positive and statistically significant ef-
fect of marijuana on hard drugs, although the standard errors are a bit large. This supports
the view that marijuana usage may be a gateway to the consumption of harder drugs and
accords with the core findings of Deza (2015). The other two estimators also agree on a
positive influence of marijuana on the consumption of harder drugs, albeit it is statistically
insignificant in the RE case. Additionally, the more robust EL estimates suggest that alcohol
does not play a significant role in the consumption of either drug unlike RE and MLE.

We also computed two overidentification test statistics, presented in the bottom rows of
Table 1. The first is the empirical likelihood ratio test LR = —2 (Zfil In7m; —In %) The

second is a variant of the usual overidentification test which uses the efficient weight matrix:

1
N N N
1 . 2 :
Wald = ﬁ ;:1: mé(}/;di/;oaxl) § Wimé(}/;7}/;OJXi)mé(}/;a}/;Oaxi)/ pa mé(}i?}ioaxl)

i=1

11As in Deza (2015), the heterogeneity distribution is discrete with 3 mass points and is independent of
the regressors. The initial condition relates to the covariates and heterogeneity through a logistic regression.
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In large samples, LR, Wald N x%(45), where the degrees of freedom correspond to the
number of overidentifying restrictions (see, e.g Imbens (1997)). As both test values fall
below the 90th quantile of a x?(45), the trivariate VAR(1) logit model appears appropriate.

Additional estimates for the iterated GMM estimator of Hansen et al. (1996) are reported

in Table 2 of the Online Appendix. The results closely mirror those for EL in Table 1.

Table 1: Parameter estimates of the trivariate VAR(1) logit based on NLSY97 data

Empirical Random Naive
Likelihood Effects MLE
A M HD A M HD A M HD
(1) (11) (111) (IV) (V) (VI) (VII) (VIII) (IV)
V1 048 -0.06 0.38 1.45 -0.39 -0.28 2.47 0.88 0.81
(0.13) (0.21) (0.33) (0.10) (0.09) (0.18) (0.05) (0.06) (0.10)
Vim2 029 083 049 -0.49 144  0.08 0.70 2.56 1.41
(0.20) (0.14) (0.24) (0.09) (0.09) (0.11) (0.06) (0.05) (0.08)
Vi3 -0.29  0.19 048 -0.59  -0.20 1.60 0.25 0.72 2.11
(0.31) (0.22) (0.23) (0.18) (0.12) (0.10) (0.12) (0.08) (0.09)
age 0.09 -0.09 0.03 0.16 -0.14 -0.07 -0.04 -0.14 -0.21
(0.05) (0.07) (0.10) (0.02) (0.02) (0.03) (0.00) (0.00) (0.00)
college 025 020 0.31 0.75  -0.05 -0.20 042  -0.05 -0.24
(0.14) (0.15) (0.26) (0.06) (0.06) (0.08) (0.04) (0.04) (0.07)

LR Test 56.45
“Wald” Test 54.38

Notes: standard errors are reported in parenthesis. Columns titled “A”,“M”, “HD” report parameter esti-

mates for the alcohol layer, marijuana layer, and hard-drugs layer of the trivariate VAR(1) logit model.

7 Conclusion

Dynamic discrete choice models are widely used to study the determinants of repeated deci-
sions made by economic agents over time. This paper has introduced a systematic procedure
to estimate a large class of such models with logistic (or Type I extreme value) errors and
potentially many lags, all while remaining agnostic to unobserved individual heterogeneity.

Our application underscores the practical value of the methodology.
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There are several interesting directions for future research. Omne natural question is
whether the tools developed here can be deployed in other discrete choice frameworks with
similar or even more flexible structure. Another challenge lies in deriving complete basis of
moment restrictions beyond the binary response case for arbitrary time horizons. We are

investigating some of these topics in ongoing work.

References

Aguirregabiria, V. and Carro, J. M. (2021). Identification of average marginal effects in fixed
effects dynamic discrete choice models. arXiv preprint arXiw:2107.06141.

Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estima-
tors. Journal of the Royal Statistical Society Series B: Statistical Methodology, 32(2):283—
301.

Arganaraz, F. and Escanciano, J. C. (2023). On the existence and information of orthogonal
moments. arXiww preprint arXiw:2303.11418.

Bickel, P. J., Klaassen, C. A., Bickel, P. J., Ritov, Y., Klaassen, J., Wellner, J. A., and
Ritov, Y. (1993). Efficient and adaptive estimation for semiparametric models, volume 4.
Springer.

Bonhomme, S. (2012). Functional differencing. Econometrica, 80(4):1337 — 1385.

Browning, M. and Carro, J. M. (2014). Dynamic binary outcome models with maximal
heterogeneity. Journal of Econometrics, 178(2):805-823.

Card, D. and Hyslop, D. R. (2005). Estimating the effects of a time-limited earnings subsidy
for welfare-leavers. Econometrica, 73(6):1723-1770.

Chamberlain, G. (1980). Analysis of covariance with qualitative data. The review of economic
studies, 47(1):225-238.

Chamberlain, G. (1985). Heterogeneity, omitted variable bias, and duration dependence, page
3-38. Econometric Society Monographs. Cambridge University Press.

Chay, K. Y., Hoynes, H. W.; and Hyslop, D. (1999). A non-experimental analysis of true
state dependence in monthly welfare participation sequences. In American Statistical
Association, pages 9-17.

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal
Statistical Society: Series B (Methodological), 20(2):215-232.

Dano, K., Honoré, B. E., and Weidner, M. (2025). Dynamic panel multinomial logit models.

30



Davezies, L., D’Haultfoeuille, X., and Mugnier, M. (2023). Fixed-effects binary choice models
with three or more periods. Quantitative Economics, 14(3):1105-1132.

Deza, M. (2015). Is there a stepping stone effect in drug use? separating state dependence
from unobserved heterogeneity within and between illicit drugs. Journal of Econometrics,
184(1):193-207.

Dobronyi, C., Gu, J., et al. (2021). Identification of dynamic panel logit models with fixed
effects. arXiv preprint arXiv:2104.04590.

Graham, B. S. (2013). Comment on “social networks and the identification of peer effects”
by paul goldsmith-pinkham and guido w. imbens. Journal of Business and Economic
Statistics, 31(3):266-270.

Graham, B. S. (2016). Homophily and transitivity in dynamic network formation. Technical
report, National Bureau of Economic Research.

Gu, J., Hahn, J., and Kim, K. I. (2023). The information bound of a dynamic panel logit
model with fixed effects—corrigendum. Econometric Theory, 39(1):219-219.

Hahn, J. (1994). The efficiency bound of the mixed proportional hazard model. The Review
of Economic Studies, 61(4):607-629.

Hahn, J. (1997). A note on the efficient semiparametric estimation of some exponential panel
models. Econometric Theory, 13(4):583-588.

Hahn, J. (2001). The information bound of a dynamic panel logit model with fixed effects.
Econometric Theory, 17(5):913-932.

Hansen, L. P., Heaton, J., and Yaron, A. (1996). Finite-sample properties of some alternative
gmm estimators. Journal of Business & Economic Statistics, 14(3):262-280.

Honoré, B. E., Hu, L., Kyriazidou, E., and Weidner, M. (2022). Simultaneity in bi-
nary outcome models with an application to employment for couples. arXiv preprint
arXiw:2207.07543.

Honoré, B. E. and Kyriazidou, E. (2000). Panel data discrete choice models with lagged
dependent variables. Econometrica, 68(4):839-874.

Honoré, B. E. and Kyriazidou, E. (2019). Panel vector autoregressions with binary data. In
Panel Data Econometrics, pages 197-223. Elsevier.

Honoré, B. E., Muris, C., and Weidner, M. (2021). Dynamic ordered panel logit models.
arXiwv preprint arXw:2107.03253.

Honoré, B. E. and Weidner, M. (2020). Moment conditions for dynamic panel logit models
with fixed effects. arXiv preprint arXiw:2005.05942.

Imbens, G. W. (1997). One-step estimators for over-identified generalized method of mo-
ments models. The Review of Economic Studies, 64(3):359-383.

31



Kitazawa, Y. (2022). Transformations and moment conditions for dynamic fixed effects logit
models. Journal of Econometrics, 229(2):350 — 362.

Kitazawa, Y. et al. (2013). Exploration of dynamic fixed effects logit models from a tradi-
tional angle. Technical report.

Kitazawa, Y. et al. (2016). Root-n consistent estimations of time dummies for the dynamic
fixed effects logit models: Monte carlo illustrations. Technical report.

Kruiniger, H. (2020). Further results on the estimation of dynamic panel logit models with
fixed effects. arXiv preprint arXiv:2010.03382.

Magnac, T. (2000). Subsidised training and youth employment: distinguishing unobserved
heterogeneity from state dependence in labour market histories. The economic journal,

110(466):805-837.

Muris, C., Raposo, P., and Vandoros, S. (2020). A dynamic ordered logit model with fixed
effects. arXw preprint arXiw:2008.05517.

Narendranthan, W., Nickell, S., and Metcalf, D. (1985). An investigation into the incidence
and dynamic structure of sickness and unemployment in britain, 1965-75. Journal of the
Royal Statistical Society: Series A (General), 148(3):254-267.

Newey, W. K. (1990). Semiparametric efficiency bounds. Journal of applied econometrics,
5(2):99-135.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing.
Handbook of econometrics, 4:2111-2245.

Newey, W. K. and Smith, R. J. (2004). Higher order properties of gmm and generalized
empirical likelihood estimators. Econometrica, 72(1):219-255.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent
observations. Econometrica: Journal of the Econometric Society, pages 1-32.

Pakes, A., Porter, J. R., Shepard, M., and Calder-Wang, S. (2021). Unobserved hetero-
geneity, state dependence, and health plan choices. Technical report, National Bureau of
Economic Research.

Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. the
Annals of Statistics, 22(1):300-325.

Rasch, G. (1960). Studies in mathematical psychology: I. probabilistic models for some
intelligence and attainment tests.

Wooldridge, J. M. (1999). Distribution-free estimation of some nonlinear panel data models.
Journal of Econometrics, 90(1):77-97.



Appendix

A Partial Fraction Decomposition

Lemma 6. For any reals uy, us, ..., ug, U1,V2, ...,V and ai,as,...,ax, K > 1 we have

ek +ag 1

1 K
L+ >0 entor k=l (1 + > evk+ak> (1 + 37 euwak) 1+ 0 evwtan

k=1 k=1 k=1 k=1
and
elita; Ui ta;
— + (1- e—uﬁ'vj) +
K K
1 + Z evktak 1 VEtag 1 uptag
= ( + Z} e + Z} e
K v tagtujta; uj+a;
Z(l _ e(w—uj)—(vk—vj)) crr = €
k=1 s us = +
kA 1+ > evwtan | | 14 > ewntor 1+ > ewwtan
k=1 k=1 k=1
Proof. Verification of these identities is straightforward and thus left to the reader. O]

Lemma 7. Fiz M > 2, let Y = {0,1}™. Then, for any k € Y and any reals ui, us, . . . , uns,

V1, V2, ..., U and ay, as, ..., ay, we have

M ekm(vm+am) Z Z ﬁ m(um+am l (Um+am) ﬁ ekm(um+am)
-+ [1 —e ) (uj—v; :| = S —
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and let Num denote the numerator of LHS. We have Num = Numy + Nums with

M
m=1
M
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It follows that Num = [[}_, ebm(emtam)(1 4 evmtem) and consequently
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B Proofs of key results in the main text

Proofs of Theorem 1 and Theorem 3. We focus on establishing Theorem 3 but highlight
where the arguments for the AR(1) would differ at each important step of the proof. Fix a
history ¥ € YT and consider the corresponding basis element 1{. = y} of RY". We have:

535p)xT [1{. =y} = P(Y; = y|Y? = y°, X; = x,4; = .) where by definition, for all a € R,
P(Y; = ?/|Y;0 =y X, =1, 4 = a) = gzg;; with N¥(e®) = HtT:1 eyt<Z£:”°Tyt*r+wéﬂo+a) and
D¥(e®) = [I, (1 + ezg:ﬂoryt””m”“) Notice that N¥(e®) and DY(e®) are just polyno-

mials of e - with dependence on 4°, z, T suppressed for conciseness - and that we always

have deg (N¥(e*)) < deg(DY(e”)) with strict inequality unless y = 17. Moreover, since
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by assumption for any t,s € {1,...,7 — 1} and y,5 € VP, vy + x;50 # Yy + 5o if
t # sory # g, DY) is a product of distinct irreducible polynomials in e®. Thus, by
standard results on partial fraction decompositions, there exists a unique set of coefficients

(NS, NY ... M%) € RTT! independent of the fixed effect such that:

1
@Zf=1 'YOryt—r"r‘l';BO-i-a

T
P(Y; = y|Y? =¢°, X; = 2, A; = a) :Ag+ZA%1+
t=1

=\ + To(a) + Ti(a) + Tx(a)

where Ty(a) = N\ : Ti(a) = S0 N : and finally

1 1+62f:1 Yory1—r+=}Bo+a’ t=2 "t 1+€Ele Yorvt—r+z}Bo+a’

Ty(a) = ZthpH A/ 1+ezf.:170rlyt—r+$2ﬁ0+a with Aj = 0 unless y = 17. This decomposition
breaks down the conditional probability P(Y; = y|Y? = 4°, X; = x, A; = a) into components
that depend on the initial condition, namely Ty(a),T7(a), and components that do not, i.e
T5(a). Notice that T (a) would not appear in the AR(1) case. Starting with the first group,

we can write:
To(a) = N1{yo = 1} + N {yo = 0} (2, a) — N1 {yo = 1}72°" (2, a)

D
Ti(a) = Z)\% Z Hy1 =1L, 0-2="02,.- -, 41 = e}
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Likewise, for the second group,
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The unique decompositions for each term make it clear that

—1
F(p) o yoly° Ylys Yo Y= (p—t)
yOxT_ 1771—0 (‘=I>> 71-tfl (717))
sly yi_leytfl

forms a basis of Im <€y(§)$ T> if we can show that the transition probabilities are elements of

p T

(v, )

t=2 t=p+1

Im (Ey(ﬁ)x T). We now argue that it is indeed the case:

o First, ng‘yO(.,x) € Im <E;€)x T) since

E[(1—yo)(1 — Y1) +yoYu |V =", X; =2, A, = d] = Wgowo(a@)

T
e Second, {(Wfﬁf%@)) } € Im <5(§)x T) by Theorem 4. For the AR(1)
WEV? ) pia o
model, one would appeal to Lemma 2.

e Finally, one can easily adapt the reasoning employed to prove Theorem 4 to show
p

t—1
that { <7Tfi|1yl W=t a:))) } € Im (5;?1 T). In proving Theorem 4,
yt_leytfl e

t=2

we already established that: (Wfﬂyl’yo""’y—(”_m(.,J:))) € Im <5§€)$ T). Now, by

yr1eYt-1
inspecting the induction argument of Theorem 4, it is easily seen that the result that

forT>p+1landte{p,...,T—1}
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for k = 0,...,p — 2 can be generalized. It actually holds for t = k + 1 when k =
0,...,p—2, yielding

E [ ?;;ny (Yiesr, Vi, Y7L Xi)|Y¢O7Xz‘,Ai} _ Winlyi%ow.,Yit_(p-1)(AuXi)

11—p>

which is the desired result. These terms are not present in the AR(1) case which

simplifies the argument.

Thus, we have shown that ]:;g)x - 1s a basis of Im (5@5’3)36 ) . Next, since 525]5)36 - 1s a linear map-

T
ping, the rank nullity theorem entails: dim <ker(€(p) )) = dim (R{O’l}T) — rank <S(§)x T).

Y02, T Y

We have the following implications:
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rank (5 ()
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> =27 and dim (ker(E(p)

30,2, T

9 UT =ptl, |Fpoprl=1+14321 420 — 227 — 2+1. Then, rank (5(0)”) — 9T
t=2

and dim (ker(£%), ;) =27 — 21 = 0
3. UT > p+2, |[Fp,r| = 1+1+22t Yyor(T—p)=20420(T—p) = (T—p+1)2F. It
follows that rank (5y0?x7T) (T p+1)2° and dim (ker(g ) T)> — T (T—p4+1)2°
Proofs of Lemma 1 and Lemma 2. Without loss of generality, we will consider
the case with covariates. The discussion in Section 3.2.1 implies the functional form

o Vier, Yar, Yie 1. X)) = 1Y = k}op" (Y, k. Y1, X;) for k € Y.  Therefore,
0 (Yier1, Yir, Yi1, X;) is null when Yj, # 0 implying

1
= X
1 + er0oYie—1+X], fo+A;

E |9 (Viesr, Yio, Y1, Xo)|Yio, Vi, X, A

e Xier1Pot+A; 0[0 Loy v 1 o0 oy N
1+6 ¢t+150+A ¢0 ( s Lit—1, )+ 1_|_6X£t+150+‘4i¢0 ( s Uy Lat—1, z)
Thus, to get the transition probability 7. YA, X;) = W at 0 = 6, it must be
14e’i

that ¢2|0(170’Y;t 1’X.) — e’YYit—lJr(Xit* it+1) 57¢2|0(0’0’}/;t_1’X2.) =1, and that VE € Y
D0k, 1, Y1, X,) = 0. That is: ¢)°(Yiesr, Yie, Vi1, Xi) = (1 — V)i (Vi1 =8X05),
Likewise, 9259 ( Yiei1, Y, Yieo1, X;) is null when Yj; # 1 implying

e’YOYit—l-i-Xl{tﬁo-FA'

E (03" (Vierr, Yo, Yaoo1, X0) [Yio, Vi, X, A,

< eo +X{ 1 1B0+A;

X
1 + eroYit—1+X] 1.Bo+A;

1
10,1, Yy, XZ-)>

L1, Y, X)) +

14+ 670+X{t+150+Ai 1+ 670+X{t+1,30+z4i

70 +X2{t+1ﬁ0 +A;
Y0+X7, 1 Bo+A;

Hence, to get WE‘I(AZ-,XZ») = - at 0 = 0y, we must set: gbéll(l, LY 1,X;) =
+e
1, ¢y (0,1, Y1, X;) = Y-t Xies=Xi)8 and ¢l (k,0,V;_1, X;) = 0, Vk € Y. In

compact form this is: ¢9 ( Yierr, Yo, Y1, Xi) = Y;te(l_y"t“)(”’(l_m‘lHﬁAX““)



Proof of Lemma 3. By construction for 7" > 3, and ¢, s such that T — 1>t > s > 1:

E [ (vt Vi, XolYie, Vi, X, Al

= E [ (1= Yis) + w7 (00) Y6 (Vies1, Yie, Va1, Xo) Yoo, Yi ™, X, A

1 - 5—
= W + CUSS(HO)E |:Y;SE [¢3LO(Y%+1, Yvita Yvitfla XJ’Y;O, Y;tl 17 Xi’ Al] Dfio’ Y;l 1’ Xi’ AZ
B 1 0[0 s—1 1
=15 omGorA; T Whs (0] [YiolYio, Yii ™, X, A 1 4 ent"(Bo)+A;
= — 1(0 )+ A; + (1 — e'ﬂglo(eo)*ﬂs(%) o 0[0
1 4 ets(00)+A; (1 + eus(00)+Ai)(1 + ek (90)+Ai)
1

1 4 et (Go)+4i

— (A, X))

The second equality follows from the measureability of the weight wg LO(HO) with respect to the
conditioning set. The third equality follows from the law of iterated expectations and Lemma

2. The penultimate equality uses the first identity in Lemma 6 (for K = 1) . Similarly,

E (G (i, Yy, Xo)lYao, Y™, X, A

— E [ Vis + @ik (60)(1 = Yiu)y! (Yiesr, Yo Va1, XY, Vi, X, A
6#5(90)+A1

BTSN +wtl,‘sl(90)E {(1 —Y;,)E [ ;LI(Y;tJrlaY%taY%tflaXz’)D/;LOaY;tfl?XiaAi] Yio, Vi1, X, A

ohs (00)+As i, 1 x4 erit (00)+A;
1+ ems(00)+A; s (00)F [(1 ~ i)Yo, Y7 X, Z} 1+ eni' (B0)+A;
etvs(00)+Aq eﬂill (60)+A;

= e + (1= el o) _
1+ ets(00)+A; (1 + eﬂs(90)+Az’)(1 + e”tl (90)+Ai)

elitl I (90)+A1‘

1+ e’fill(eo)-f'Ai

= 7rtl‘l(Ai7 Xl)

The second equality follows from the measurability of the weight wi‘sl(@o) with respect to
the conditioning set. The third equality follows from the law of iterated expectations and
Lemma 2. The penultimate equality uses the second identity in Lemma 6 (for K = 1).

Showing E [ggo"“(yt“ Yo Y3 X Y0, Yl X, A = (A, X) is analogous.

it—1s Lisy—15 -5 Lis,—15



Proof of Proposition 1. For any ¢, s verifying T'— 1>t > s> 1 and k € ), we have

E [ (VL YEr, X0 lYie, Vi, Ko, Al

= E |65, (Y1, X)) — G (Vi Yo, X0 Yo, i~ X, Al

:]E ]E|: Slk<}/;itiaXZ)D/ZOJ}/Ztl_l?X’MAz: |)/;,07)/£_17X27A2:| _Wflk(Asz)

=K -Wflk(Az‘)|Y%07Y5_1’XiaAi — (A,
= m " (A) — w4
—0

The second and third equalities follow from the law of iterated expectations, Lemma 3 and
Lemma 2. Showing E [w{;o"“(}ggﬂ, Yo LY LX) Y YT X, Ay | = 0 s analogous.
Proof of Proposition 2. In what follows, we drop the cross-sectional subscript i to
economize on space. The proof is based on an application of Theorem 3.2 in Newey (1990).
First, in paragraphs I)-1I), we verify that the model is mean-square differentiable and char-
acterize the nonparametric tangent set 7. Second, in paragraphs III)-1V), we characterize
its orthogonal complement 7+ and verify that the efficient score - the projection of the
score onto T+ - coincides with the efficient moment function for E [’l/]go (Y0,Y, X)|Yy, X ] =0,
namely ¢5/7 (Y5, Y, X) = —D(Yy, X)'E(Yp, X) 4, (Yo, Y, X) (see e.g Newey and McFadden
(1994))

I) Preliminary calculations

Yt (VY 1+ X{B+A)
(rrerv )

T
The parametric component of the AR(1) model writes f(YYy, X, A;0) = []

t=1

This implies

B

T
Inf(YYy, X, 4;0) = > V(Y1 + X+ A) — Zy;_l In (1 n e’y+X,§B+A>

t=1 t=1

[M]=

(1-Y1)In (1 + eXémA)

t=1



which is continously differentiable in #. Hence

eVt XiB+A
1 4 er+X(B+A

8lnf(Y|Y[),X A:0) ZT:
dln f(Y|Y0,X A:6) ET: < HXLBEA o XiB+A )
=1

Yy~ Ve T

and because ) = {0, 1}, we have

‘8lnf(Y\§o,X,A;9)’ o7 @)
Y

O f(Y[Y0, X, 40)| _ <

‘ R < Z|Xt|

IT) Mean-square differentiability and nonparametric tangent set

Consider a parametric likelihood for (Y, A)|Yy, X
fY, AlYo, X560,m) = f(Y Yo, X, A;0)q(AlYo, X51)

where ¢(.|Yy, X;n) is a density for the heterogeneity such that: a) at n = 0, ¢(.|Yo, X;0) =
q(.|Yy, X) and b) ¢(.|Y, X;7)'/? is mean-square differentiable at 7 = 0 with derivative equal
to 1q(.[Yo, X)K (.Y, X). We will prove that f(Y, A|Yp, X;6,n)"/? is mean-square differen-
tiable at (6o, 0), meaning E [Y] = o(||1?|| + n?) where

T = f(Y, AYo, X; 00 + h,n)'/? — £(Y, A|Ys, X; 65, 0)"/?

1 Oln f(Y|Yy, X, A; 0
- I AN X0 (L ETREAN) e apy, x) )

Similarly to Lemma A-2 in Hahn (1994), we decompose T in three terms

T=Ti+To+ T3

T, = (q(AlYo,X;n)”? — q(AlYy, X)V? — gqmm,Xmem,m) FYYo0, X, A; 0 + h)Y?

o ( (Y[Yo, X, As g+ 1)'72 = F(Y Yo, X, A 6)'/* — %f(ym,X,A;eoﬂ/?h'alnfm?é X’A;G(]))

X g(AlYp, X)'/2
Ty = Jq(AlYe, X)' 2K (A[Yo, X) (F(Y Yo, X, A3 0 + )2 = F(Y [Yo, X, A;00)?)



By Jensen’s inequality, we have T2 < 3Y2+3Y,+3Y2. By b), E[Y?] = o(n?) = o||h|* +7?).
To show that E[T2 = o(||h||> + n?), we verify that f(.|Yp, X, A;6,) verifies the condi-
tions of Lemma A-1 in Hahn (1994). The first condition is that f(Y|Yy, X, A;.) is con-

tinuously differentiable in 6 which follows from paragraph I). The second condition is that

B [ (Y Y0.XA) 9ln f(Y[Y0.X.As)

59 507 is continuous in # and finite at #y. This follows from Theo-

rem 2 assumption i), inequalities (3) and the dominated convergence theorem. By Lemma
A-1 in Hahn (1994), f(.|Yo, X, A;0)'/2 is mean square differentiable at 6 with derivative
TF(YYo, X, A; 90)1/281nf(y‘§3’x"4;90). This implies that: E [Y3] = o(|hlI*) = o(||hl]* + 62).
Last, E[Y3] = o(||h]|*+ &%) by the arguments on pages 624-625 of Hahn (1994). We conclude
that f(Y, A|Yy, X;0,7)"/? is mean-square differentiable at (6y,0) with derivative:

1 oln f(Y|Yo, X, A; 6 !
3Vl X 002 (LD R AN ey, )

From Bickel et al. (1993) Proposition A.5.5, f(Y|Yy, X;6,1)"/? is mean-square differentiable

at (0p,0) with derivative

alnf(Y’Ytha Aa 90
oy’

/
%f(Y|Y0,X;90,0)1/2 (E { )m,Y,X} JE[K(A]Ys, X)|Y5, Y, X}>

This implies that the nonparametric tangent set is
T = {E[K (A, Yy, X)|Yo, Y, X] such that E[K (A, Yy, X)[Y, X] =0}

Having established mean-square differentiability of the model, noting that 7 is linear, and

that by Theorem 2 assumption iii),
E [u5! (%, Y, X)ul! (¥, V. X)'| = E [D(Yo, X)'S(¥5, X) ' D(Yp, X)]

is nonsingular, all that remains to check are: ¢) w;{ Y, Y, X) e T+ and d) S%(Yp,Y, X) —
(Y, Y, X) € T where S%(Yp,Y, X) = E [f“nf (V[¥o.X.AG0) |y, y, X} . To this end, similarly

to Hahn (1997), we shall first show that c¢) and d) hold conditional on a pair (yo,x) €
Y x X7T for the initial condition and the regressors. In other words, we will prove next that

zbef f (yo, Y, ) is the projection of the score onto the orthocomplement of the closed linear

10



space
Ttvo.2) {E K (A, yo,2)|Yo = 40, Y, X = z] such that E[K (A, yo, x)|Ys = yo, X = 2] = 0}

III) Verification of condition c) ¥§f(yo,Y,x) € 7’l

(y0,x)

We begin by characterizing the orthocomplement of the nonparametric tangent set ’Ty ) By
definition, any g(yo,Y,x) € 7Zy ) 1s such that for any element of Ty, x), E[K (A, yo,2)[Yo =
Yo, Y, X = x|, we have

0=E [g(yOaxx)E[K(AvyOax)|Y() = y07Y7X = x]ln/b = ?JO7X = IL’}

= /]E [Q@Oa }/7 x)D/O = y07X =, A= CL} K(CL, Yo, ny(a‘yO,Q?)da
Since this equality must hold for any K verifying E[K (A, yo, z)|Yo = y0, X = x] = 0, choosing
K(Aay()ax) =K |:g<y07}/7x)|)/0 - y07X = qu} —E [Q@OaYaI)D/O - ?JO,X = [E]

yields 'V <E [g(yo, Y, x)|Yy = yo, X = x, A} 1Yo = yo, X = x) = 0 so that
E [g(yg,Y,x)|Yo = yg, X :ZB,A} = ¢(yo,x) g-a.s for some constant vector c¢(yo,x). To
see that this equality actually holds on the entire real line beyond A, - the support of ¢ -
remark first that E [g(yo, Y, z)[Yy = yo, X = z, A = .] is real analytic on A, since logit proba-
bilities are real analytic as ratios of exponential functions. Second, by Theorem 2 assumption
ii), A, has an accumulation point. Thus, the Identity Theorem (see e.g Proposition 7 in
Argafiaraz and Escanciano (2023)) implies that E [g(yo, Y, 2)|Yo = yo, X = z, 4] = c(yo, z),
A € R. Conversely, it is clear that any g function such that E [g(yo, Y, x)|Yy = yo, X = 2, A}
is constant in A will be an element of 7@0,1) since E[K (A, yo,2)|Yo = yo, X = z] = 0. We

conclude that

T;_Om {g(y07Y7 IE) ’g<y07Y7 I’) = C<y07‘r) +g*(y07Y7 x)? C(Z/Oa ) € RKerl’g* € Tyo z), *}

Ty = 9«0, Y, 2) | E [gu(yo, Y, 2)[Yo = 40, X =z, A] = 0,A € R}

An important observation is that ’7'L = ker(Eyur)® =™, where we recall that the

(yo,)
nullspace of the conditional expectation operator Eyo.z,r 1 precisely the set of valid moment

functions in the AR(1) model. By Theorem 1, this is a (27 — 27')-dimensional vector

11



space with an example of basis elements given in Proposition 1. This makes it clear that

zpef ! (yo,Y,z) € T since each of its components is a linear combination of the valid

C 7?2,!015 ) weff(y()ayv l') € 7?

(Yo,x),*

moment functions in Proposition 1. Finally since 7?

Y0, Y0,Z)

IV) Verification of condition d) S°(yo,Y,x) — 1§ (yo,Y,x) € Tiyox)

Since 7T(y,2) is a closed vector space of a Hilbert space, Ty,.) = (Tyo I)>
Thus, to check condition d) S%(yo,Y,z) — wef Hyo,Yyz) € Tyo,z), we will ver-
ify that Vg € T, E{(Sf)(yo,m) weff@o,m))g(yo,mm=yo,X=x] -

0. Given our characterization of 7';0 ) it is sufficient to check that

E |:<SG(}/0,Y,X) ¢eff(y07 }/7 I’)) ¢90(907Y7 ZE) |}/0 = y(bX = .ZTJ:| =0.
To this end, note that by the Generalized Information Equality (c.f equation (5.1) in Newey
and McFadden (1994)) we have

0 Y,
E [%')Wo =y, X = l} =" [%o(yo,Y, 2)S%(yo, Y, ) |Yo = yo, X =
which implies

1/

Vsl (o, Y, 2) = E |1g, (30, Y, 2)S (0, Y, 2)' Yo = yo, X = x| X

E [wﬂo(yovy7 x)¢90<y0axm)/|% = ?JO,X = [E} ! 77Z)90(y0a§/7x)

=E Sa(yOJ}/ax)w@O(yOvY? .Z')/D/b - y(bX =x| X

E [¢o, (0, Y, 2)tg, (y0, Y, ) |Yo = yo, X = ﬂ_l Vo, (Yo, Y, x)
= ]E* [Se(y(% Y7 37)’1%0(3/07 YJ LU), % = ZJO,X = Z‘:|

where E* [Z;|Z5; W] denotes the (mean-squared error minimizing) linear predictor of Z; on

Zy given W. Therefore, it immediately follows by properties of conditional linear predictors

(e.g Wooldridge (1999), Lemma 4.1) that
E |:<Sa(y07 va I’) - ¢§gf(90a Y7 iL‘)) ¢00(y07 Y7 IE),’YE] = yD:X = $:| = O

We conclude that wef ! (yo, Y, ) is the projection of the score onto 72 It follows that

Y0,2)”
ef f (Yo, Y, X) is the projection of the score onto T+, i.e it is the efficient score.

12



Proof sketch of Theorem 4. In model (ARp), with 7" > 2 and t € {1,...,T — 1}, the

moment functions

0[0 — . g _\"P : o /
el (Yz‘t+17 Yit, YZ&—};: Xi) = (1 - Y%t)ey”ﬂ(““y“*l 2 MAY 11— AX 4 B)

11 t—1 _ 1-Yier1) (11 (1=Yiem 1)+ >0, A1 +AX], 1B
9 (‘Y’ét+1)-ylé)-y1;t—p7Xi) _Y‘ite( it+ )( ( it—1) 2172 it+1 it+1 )

can be viewed as the counterpart of the AR(1) transition functions in Lemma 2 where one
would treat lagged outcome variables Yj;_,. for r = 2,...,p as additional strictly exogenous

regressors. Leveraging this insight, it immediately follows from the proof of Lemma 2 that

E |: 2!}0(}{#_’_1’ }/;‘t, Yt—l Xz)|YZO, }/;tl—l, Xi, AZ:| _ 7Tt0|0,yit—1,---7yit7(1771) (A“ XZ)

it—p>
1

14+ er:Q 70lYit+1—z+X{t+1ﬁo+Ai

it—p>

]E [ é(l)l(yb‘t_i_l,yitgyt_l Xi)|}/;07§/itl—1,Xi7Aii| _ 7Tt1|1,yit—1,...,yit—(p—l) (A“XZ>

6701+Zf:2 YorYity1-1+X{, 1 Bo+A;

1+ e"/oﬁ‘z%ﬂ:g YorYitr1-1+X{, 1 Bo+A;

Now, for T >p+1fixt € {p,...,T—1} and y = (y1,...,y,) = ¥} € {0,1}”. One can show

by finite induction the statement P(k):
E+1 k1 .
E o™ (YViern, Yie Vil X YOV 00, X, 4y = it HomoenBomn (g, )

it—(p+k)

for k=0,...,p—2, p> 2. We give a brief proof sketch below.

Base step: P(0) is true by the above result which also deals with the edge case p = 2.

Thus, we can assume p > 3 in the remainder of the induction argument.

Induction step: Suppose P(k — 1) is true for some k € {1,...,p — 2}, we show that P(k)
is true. Using the law of iterated expectations, the induction hypothesis P(k — 1) and the

13



identities of Lemma 6, we have for y; = 0, yx1 =1

k
E[ g(‘)o’yz’l(YiHhY;tth %erk )|Y0 ; t—(k-+1) XZ,A]
=B |(1 = Yii) + 0" (00)d0 ™ Viesn, Yo, Vi b1y Xo) Y sl V0, Vi 0, X, 4
B 1
o 1+ eut—k(90)+Ai
k k
+w?|0’y271(90>E [E[ 2(')07% (Yier1, Yie, Yy~ %p+k 1) XY VAR X, Ay | Yaor |V, Yo (k1) XiaAi:|

1 0[0,y%5,1 O|0,y Yit by k+1)
- 1+6ut_k(90)+Aiwt . (GO)E > * e 1>(AZaX) it— k|Y0 il = XZ,A

1 0[0,5%,1 1 0 yt—(k+1)
= 7270y E }/ti— Y,Y 7XiaAi
1 -+ 6ut_k(90)+Ai + wt ( 0) 1 + GEI:ZQ 'YOT?JT"FZf:)H_l ’YOTYitf(rfl)+Xz{t+1BO+Ai t kl ’ il
1 0lo, 1 ett—k(00)+Ai
— A + (1 — ek 5 (00 u-k(600))) — e
1 + eut—r(% i 14 ek v, (00)+A1+etk0
B 1
1+ ekOI vt (60)+A;
— 71_?‘07y2717Y'it7(k+l)7"'7yvit7(p71) (A,“X)
We leave out the derivations for the other three configurations: y; = 0,yx1 = 0, and

1 = Lygrr = 0, and y; = 1,yx1 = 1 which follow completely analogous steps. It then

remains to show that

]E[ z;lyl (}/it-&-h}/lhyt %Qp 1) )|Yo Y;tl P XHA] - Wfl‘yl (AZ7X1)

To this end, it suffices to repeat the calculations employed in the induction argument but

using this time

7

yl‘yl }/it 17Y;t,Y = YO7 t =1) XlaA - yl‘yl it7<p71> A’HX’L
+ it—(2p—2)’ il
1 -
k‘fl Y1 (9) = Z VrlYp + Xz{t-s-lﬁ
r=1

p
Ut (p-1)(0) = Z%Y;t—(ﬂrp—l) + Xz(t—(p—l)ﬁ

r=1

Y, 1-y,
W/ (g) = [1 - e<k31y{<9>—ut—<p—1><0>>] ’ [1 _ e—(ki“'yfw)—ut_(p_l)(e))] ’
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