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1 The remaining steps for the AR(p) model with p > 1

As indicated in Subsection 4.2, Step 1) (b) is entirely analogous to the AR(1) case since

the transition probabilities have the same functional form. Thus, as soon as T ≥ p + 2, we

can construct the transition functions displayed in Lemma 8. The proof is identical to that

of Lemma 3.

Lemma 8. In model (ARp) with T ≥ p+2, for all t ∈ {p+1, . . . , T − 1}, s ∈ {1, . . . , t− p}

and yp1 ∈ Yp, let µs(θ) =
∑p

r=1 γrYis−r +X ′
isβ, κ

y1|yp1
t (θ) =

∑p
r=1 γryr +X ′

it+1β,

ω
y1|yp1
t,s (θ) =

[
1− e(κ

y1|y
p
1

t (θ)−µs(θ))

]1−y1 [
1− e−(κ

y1|y
p
1

t (θ)−µs(θ))

]y1
and define the moment func-

tions:

ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi) = 1{Yis = y1}+ ω

y1|yp1
t,s (θ)1{Yis ̸= y1}ϕ

y1|yp1
θ (Y t+1

it−(2p−1), Xi)

Additionally, if T ≥ p + 3, for all collection of ordered indices sJ1 with J ≥ 2 satisfying

t− p ≥ s1 > . . . > sJ ≥ 1, define analogously

ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = 1{YisJ = y1}

+ ω
y1|yp1
t,sJ

(θ)1{YisJ ̸= y1}ζ
y1|yp1
θ (Y t+1

it−1, Y
s1
is1−p, . . . , Y

sJ−1

isJ−1−p, Xi)
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Then

E
[
ζ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

E
[
ζ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

For Step 2), provided T ≥ p + 2, it is clear that the difference between any two distinct

transition functions associated to the same transition probability in t ∈ {p + 1, . . . , T − 1}

will yield a valid moment function. Proposition 2 presents a family of 2T −(T +1−p)2p valid

moment functions generalizing those obtained for the one lag case. Recall that by Theorem

3, this is precisely the total number of moment restrictions for the AR(p) logit model. We

verified numerically for various values of T and p that they are linearly independent.

Proposition 2. In model (ARp)

if T ≥ p+ 2, for all t ∈ {p+ 1, . . . , T − 1}, s ∈ {1, . . . , t− p} and yp1 ∈ Yp, let

ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi) = ϕ

y1|yp1
θ (Y t+1

it−(2p−1), Xi)− ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi),

if T ≥ p + 3, for all t ∈ {p + 1, . . . , T − 1} and collection of ordered indices sJ1 with J ≥ 2

satisfying t− p ≥ s1 > . . . > sJ ≥ 1, and for all yp1 ∈ Yp, let

ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = ϕ

y1|yp1
θ (Y t+1

it−(2p−1), Xi)− ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)

Then,

E
[
ψ

y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= 0

E
[
ψ

y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= 0

The proof is identical to that of Proposition 1. From a practical standpoint, these results

show that functional differencing in panel data logit models, i.e solving equation (1) in the

main text, can be broken down into a sequence of equivalent simpler subproblems period by

period that collectively pin down all moment conditions. Our procedure can be advantageous

in sophisticated models with a few lags where numerical/symbolic approaches using the full

likelihood as in Honoré and Weidner (2020) may start to prove difficult.
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2 An identification argument for AR(p) logit models

with p > 1

This section discusses ways to leverage our methodology and moment restrictions to identify

the common parameters. For ease of exposition, we concentrate on the AR(2) logit model

with T = 4 and generalize the insights towards the end.

There are two possible paths to inference. The first one is is to consider the “identified set”

ΘI of θ0 based on the four conditional moment restrictions implied by the AR(2) model:

ΘI =

{
θ ∈ R2+Kx : Eθ0

[
ψ

y1|y1,y2
θ (Y 4

i0, Y
1
i−1, Xi)|Y 0

i , Xi

]
= 0, ∀(y1, y2) ∈ {0, 1}2

}
and construct confidence sets for θ0 following e.g Andrews and Shi (2013). Instead, the

sharp identified set may be computed following the approach of Dobronyi et al. (2021) if

the covariates Xi are discrete with finite support. Alternatively, a second approach which

we develop further here is to formulate sensible restrictions on covariates that secure point

identification in the spirit of Honoré and Kyriazidou (2000). Specifically, we consider the

case where a continuous scalar component Wi2 of Xi2 has unbounded positive support con-

ditional on Y 0
i , the other regressors, Ai and has a non-trivial effect β0W of known sign to the

econometrician. This is the content of Assumption 1 in which Zi = (R′
i,Wi1,Wi3,Wi4), and

Xit = (Wit, R
′
it) ∈ RKx for all t ∈ {1, 2, 3, 4}. Dobronyi et al. (2023) used a similar device

to develop an alternative distribution-free semiparametric estimator to that of Honoré and

Kyriazidou (2000) that can accommodate time effects in the baseline one lag model.

Assumption 1. (i) The covariate Wi2 is continuously distributed with unbounded support

on R+ conditional on Y 0
i , Zi, Ai and (ii) β0W is known to be strictly negative.

Besides being a technical convenience, Assumption 1 may be reasonable in some situations,

e.g in the context of our empirical application, the econometrician may have a confident prior

that drug prices affect individual drug consumption negatively. We point out that nothing

in the discussion that follows hinges critically on βW < 0 and or Wi2 having support on the

positive reals. A set of perfectly symmetric arguments will deliver the same conclusions if

instead βW > 0 and Wi2 has unbounded support on R−.
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Assumption 2. (i) θ0 = (γ01, γ02, β
′
0)

′ ∈ G1 × G2 × B = Θ, G1,G2,B compact. The

conditional densities of Ai and Zi verify:

(ii) lim
w2→∞

q(a|y0, z, w2) = q∞(a|y0, z), lim
w2→∞

p(z|y0, w2) = p∞(z|y0), where q∞ and p∞ are

densities.

(iii) There exists positive integrable functions d0(a), d1(z), d2(z) such that q(a|y0, z, w2) ≤

d0(a) for all a ∈ A, d1(z) ≤ p(z|y0, w2) ≤ d2(z) for all z ∈ RKx−1

(iv) w2 7→ p(a|y0, z, w2), w2 7→ p(z|y0, w2) are continuous in w2.

Assumption 2 are standard regularity conditions for an application of the dominated con-

vergence theorem that once paired with Assumption 1 are sufficient to establish that θ0 is

identified at infinity. The outline of the argument is as follows. Under these assumptions,

by sending Wi2 to ∞, the valid moment function ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) of Proposition 2

reduces to

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)Yi3

+
[
eX

′
i34β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X′
i31βYi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

(3)

which occurs because limw2→∞ ew2βW = 0 and Yi2 = 0 with probability one conditional on the

regressors and the fixed effects. The key observation is that this “limiting” moment function

has a similar functional form to the valid moment functions of the AR(1) model with T = 3.

In turn, this implies monotonicity properties on certain regions of the covariate space that

we can exploit to point identify θ0 in the spirit of Honoré and Weidner (2020). To this end,

let (x̄, x) ∈ R2, such that x̄ > x and define the sets

Xk,+ = {x ∈ R4Kx|x̄ ≥ xk,3 ≥ xk,4 > xk,1 ≥ x or x̄ ≥ xk,3 > xk,4 ≥ xk,1 ≥ x}

Xk,− = {x ∈ R4Kx|x ≤ xk,3 ≤ xk,4 < xk,1 ≤ x̄ or x ≤ xk,3 < xk,4 ≤ xk,1 ≤ x̄}

for all k ∈ {1, . . . , Kx}. In words, Xk,+ is the region of the covariate space in which values

of the k-th regressor in periods t ∈ {1, 3, 4} belong to [x, x̄] and verify xk,3 ≥ xk,4 ≥ xk,1
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with at least one strict inequality. Instead, Xk,− is the region of the covariate space where

realizations of the k-th regressor obey the reverse ranking. With these notations in hands,

we have the following theorem,

Theorem 5. For T = 4, suppose that outcomes (Yi1, Yi2, Yi3, Yi4) are generated from model

(ARp) with p = 2, initial condition y0 ∈ Y2, common parameters θ0 = (γ′0, β
′
0) ∈ R2+Kx and

that Assumptions 1 and 2 hold. Further, for all s ∈ {−,+}Kx, let Xs =
Kx⋂
k=1

Xk,sk and suppose

that for all y0 ∈ Y2

lim
w2→∞

P
(
Y 0
i = y0, Xi ∈ Xs |Wi2 = w2

)
> 0

Let

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Xi) |Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
Then, θ0 is the unique solution to the system of equations

Ψ
0|0,0
s,y0 (θ) = 0, ∀s ∈ {−,+}Kx , ∀y0 ∈ Y2

Proof. Specializing Proposition 2 to the AR(2) with T = 4 yields the valid moment function:

ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) =

(
eγ2Yi0−X′

i42β − 1
)
(1− Yi1)(1− Yi2)Yi3

+

[
eγ2Yi0−X′

i42β +
(
1− eγ2Yi0−X′

i42β
)
e−X′

i43β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ eγ1(1−Yi0)+γ2(Yi0−Yi−1)+X′
i21βYi1(1− Yi2)Yi3

+ e−γ1Yi0−γ2Yi−1+X′
i41β

[
eγ1+γ2Yi0−X′

i42β +
(
1− eγ1+γ2Yi0−X′

i42β
)
eγ2−X′

i43β

]
Yi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

− (1− Yi1)Yi2

Consider, the “limiting” moment function ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) given in (3). For s ∈

{−,+}Kx , consider the moment objective

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
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We will show in two successive steps (a) and (b) that

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
(a)

= E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = ∞
]

(b)

To establish (a), we start by observing that the history sequence (1 − Yi1)Yi2 featuring in

ψ
0|0,0
θ has expectation zero. To see this, note that by iterated expectations

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
= lim

w2→∞

∫
eγ02y0+x′

2β0+a

1 + eγ02y0+x′
2β0+a

1

1 + eγ01y0+γ02yi−1+x′
1β0+a

f(a, z|y0,Xs, w2)︸ ︷︷ ︸
joint density

dadz

Now, f(a, z|y0,Xs, w2) = q(a|y0, z, w2)p(z|y0,Xs, w2) = q(a|y0, z, w2)
p(z|y0,w2)1{Xi∈Xs}∫

Xs
p(z|y0,w2)dz

. Hence,

by part (iii) of Assumption 2, an integrable dominating function of the integrand is

eγ02y0+x′
2β0+a

1 + eγ02y0+x′
2β0+Ai

1

1 + eγ01y0+γ02yi−1+x′
1β0+a

p(a, z|y0,Xs, w2) ≤ d0(a)
d2(z)∫

Xs
d1(z)dz

Moreover, by parts (ii)-(iii) of Assumption 2 and the Dominated Convergence Theorem,

lim
w2→∞

f(a, z|y0,Xs, w2) = q∞(a|y0, z)
p∞(z|y0)1{Xi ∈ Xs}∫

Xs
q∞(z|y0)dz

≡ f∞(a, z|y0,Xs)

Hence another application of the Dominated Convergence Theorem gives

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
=

∫
lim

w2→∞

eγ02y0+x′
2β0+a

1 + eγ02y0+x′
2β0+a

1

1 + eγ01y0+γ02y−1+x′
1β0+a

f(a, z|y0,Xs, w2)dadz

=

∫
0× f∞(a, z|y0,Xs)dadz

= 0

where the third line follows from the fact that limw2→∞ ew2βW = 0 by Assumption

1. Applying the same arguments to each remaining summand of ψ
0|0,0
θ and collecting

terms delivers (a). To obtain (b), we note that by part (iv) of Assumption 1, w2 7→

E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
is continuous with a well defined limit

at infinity in light of (a). As a result, we can work directly with its continuous extension at
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infinity. Let us focus on the initial condition y0 = y−1 = 0. It is clear from Equation (3) that

Ψ
0|0,0
s,0,0(θ) does not depend on γ1. Furthermore, by parts (i) of Assumption 2 we note that we

have the following integrable dominating functions for the derivative:∣∣∣∣∣∣∂ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂γ2

∣∣∣∣∣∣ = eγ2+X′
i31βYi1(1− Yi2)(1− Yi3)Yi4 ≤ sup

g2∈G2,b∈B
eg2+2max(|x̄|,|x|)∥b∥1

∣∣∣∣∣∣∂ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂βk

∣∣∣∣∣∣ =
∣∣∣∣Xik,34e

X′
i34β(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+Xik,31e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)Yi4

+Xik,41e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)(1− Yi4)

∣∣∣∣
≤

∣∣Xik,34

∣∣eX′
i34β +

∣∣Xik,31

∣∣eγ2+X′
i31β +

∣∣Xik,41

∣∣eγ2+X′
i31β

≤ 2max(|x̄|, |x|) sup
b∈B

e2max(|x̄|,|x|)∥b∥1(1 + 2 sup
g2∈G2

eg2)

Hence, by Leibniz integral rule, we get

∂Ψ
0|0,0
s,0,0(θ)

∂γ2
= E

∂ψ0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂γ2
|Y 0

i = (0, 0), Xi ∈ Xs,Wi2 = ∞


= E

[
eγ2+X′

i31βYi1(1− Yi2)(1− Yi3)Yi4|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞

]
= E

eγ2+X′
i31β E

[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai

]︸ ︷︷ ︸
>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


> 0

Similarly,

∂Ψ
0|0,0
s,0,0(θ)

∂βk

= E

∂ψ0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂βk
|Y 0

i = (0, 0), Xi ∈ Xs,Wi2 = ∞


= E

[
Xik,34e

X′
i34β×
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E
[
(1− Yi1)(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai

]︸ ︷︷ ︸
>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


+ E

[
Xik,31e

γ2+X′
i31β×

E
[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai

]︸ ︷︷ ︸
>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


+ E

[
Xik,41e

γ2+X′
i31β×

E
[
Yi1(1− Yi2)(1− Yi3)(1− Yi4)|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai

]︸ ︷︷ ︸
>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


The last display shows that

∂Ψ
0|0,0
s,0,0(θ)

∂βk
> 0 if sk = + and

∂Ψ
0|0,0
s,0,0(θ)

∂βk
< 0 if sk = −. Therefore,

appealing to Lemma 2 in Honoré and Weidner (2020), we conclude that the 2Kx system of

equations in Kx + 1 unkowns given by:

Ψ
0|0,0
s,0,0(θ) = 0, ∀s ∈ {−,+}Kx

has at most one solution. It is precisely (γ02, β0), since the validity of ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)

for arbitrary Xi directly implies the validity of the limiting moment ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

at “Wi2 = ∞”. Then, notice that for any other initial condition y0 ∈ {(0, 1), (1, 0), (1, 1)},

the objective Ψ
0|0,0
s,y0 (θ) is strictly monotonic in γ1. Hence, given (γ02, β0), it point identifies

γ01. This concludes the proof of Theorem 5.

Theorem 5 shows that point identification of θ0 is achievable in higher-order dynamic logit

models in short panels. The main cost for this guarantee is Assumption 1 which pre-

sumes knowledge of the data generating process beyond the baseline setup. Addition-

ally, there should be sufficient variation in the regressors Xit as Wi2 7→ ∞ to ensure that

limw2→∞ P
(
Y 0
i = y0, Xi ∈ Xs |Wi2 = w2

)
> 0 for all s ∈ {−,+}Kx . Our arguments are

easily generalizable to AR(p) models with lag order p ≥ 3. Under natural extensions of

Assumptions 1 and 2, the model parameters θ0 = (γ01, . . . , γ0p, β
′
0) are identified at infinity

provided T ≥ 2 + p.

Remark 8 (Time effects). Theorem 5 does not readily deals with time effects since such
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covariates may violate the condition limw2→∞ P
(
Y 0
i = y0, Xi ∈ Xs |Wi2 = w2

)
> 0. For

example, it is clear that if the k-th covariate is a time trend, the rank ordering on the

regressors demanded by the sets Xk,+,Xk,− cannot be satisfied. Nevertheless, it is possible

to adapt the argument to accommodate these cases. Suppose for concreteness that Xikt = t.

By further sending Wi3 to infinity, the limiting moment function of equation (3) reduces to

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+3βk+X′
−k,i41β−kYi1(1− Yi2)(1− Yi3)(1− Yi4)

where we momentarily use the shorthands X−k,i41 and β−k to denote all covariates and slope

coefficients besides the k-th. For (Yi0, Yi−1) = (0, 0), this valid moment function only depends

on β and we can view βk as playing the role of the state dependence coefficients in the proof of

Theorem 5. This means that under additional regularity assumptions, analogous arguments

to those in the proof will point identify β0. Varying the initial condition is then sufficient to

point identify γ0 given the monotonicity of the moment function in (γ1, γ2).

3 Proofs for the VAR(1) logit model

Proof of Lemma 4. We have

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= P (Yit = k|Yi0, Y t−1

i1 , Xi, Ai)

×
∑
l∈Y

P (Yit+1 = l|Yi0, Y t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=
M∏

m=1

ekm(
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

×
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

e
∑M

m=1(lm−km)(
∑M

j=1 γmj(Yj,it−1−kj)−∆X′
m,it+1βm)

=
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

=
M∏

m=1

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

9



Since
∑

l∈Y
∏M

m=1 e
lm(

∑M
j=1 γmjYj,it−1+X′

m,itβm+Am,i) =
∏M

m=1(1+e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i) we

finally get

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

M∏
m=1

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

M∏
m=1

(1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

=
M∏

m=1

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

= π
k|k
t (Ai, Xi)

Proof of Lemma 5. By definition, for T ≥ 3, and for t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai)+∑
l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}ϕk|k

θ (Y t+1
it−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]

=
M∏

m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)π

k|k
t (Ai, Xi)P (Yis = l|Yi0, Y s−1

i1 , Xi, Ai)

=
M∏

m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]] M∏
m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i

elm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i

=
M∏

m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i

= π
k|k
t (Ai, Xi)

The first line follows from the measurability of the weight ω
k|k
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the

definition of µj,s(θ) and follows from the law of iterated expectations and Lemma 4. The

third line makes use of the definition of κ
k|k
m,t(θ) and ω

k|k
t,s,l(θ) and the penultime line uses

Appendix Lemma 7.
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4 Moment restrictions for the dynamic multinomial

logit model

This section presents new results for the first-order dynamic multinomial logit model with

fixed effects, MAR(1) for short. The model is described by

Yit = argmax
c∈Y

Y ∗
ict, t = 1, . . . , T (MAR1)

Y ∗
ict =

C∑
l=0

γcl1{Yit−1 = l}+X ′
ictβc + Aic + ϵict

where Y = {0, 1, . . . , C}, ϵict are serially independent identically distributed type I extreme

value errors, independent of strictly exogenous regressors Xi = (Xi1, . . . , XiT ) ∈ X T , lagged

outcomes variables, and of fixed effects Ai = (Ai0, . . . , AiC) ∈ A. Here, we assume X ⊆

RK0 × . . . × RKC , A = RC+1. The initial condition is Yi0 ∈ Y and as usual we leave

its distribution conditional on (Ai, Xi) unrestricted. This setup gives rise to the following

transition probabilities:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, X,A) =

eγkl+X′
kt+1βk+Ak

C∑
c=0

eγcl+X′
ct+1βj+Ac

, t = 1, . . . , T

Following Magnac (2000), we normalize the transition parameters and fixed effect of the

reference alternative “0” to zero 1. That is γj0 = γ0j = 0 for all j ∈ Y and Ai0 = 0, leaving

θ =
(
(γkl)k,l≥1, (βl)l≥0

)
as the unknown model parameters.

Magnac (2000) studied the “pure” case without covariates and showed that an exten-

sion of the conditional likelihood approach proposed by Chamberlain (1985) can be used

to identify and estimate the state-dependence parameters. Honoré and Kyriazidou (2000)

showed that this argument carries over to the case with exogenous explanatory variables if

one matches the regressors across specific time periods. The two-step approach expounded

below offers an alternative path for estimation circumventing the need for matching.

Step 1). Similarly to the VAR(1) model, the MAR(1) seems to admit transition func-

1The state dependence parameters of the reference state cannot be identified so a normalization constraint
must be imposed. Setting Ai0 = 0 is also without loss of generality since we can always redefine the fixed
effect as A∗

ik = Aik −Ai0.
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tions only for the probabilities of staying in the same state, namely π
k|k
t (Ai, Xi) for k ∈ Y .

This feature appears to be a common trait of multidimensional fixed effects specifications. To

derive the set of these transition functions available from T = 2, we can apply the reasoning

of Subsection 3.2.1 in the main text and seek ϕ
k|k
θ (.), k ∈ Y satisfying:

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}ϕk|k

θ (Yit+1, k, Yit−1)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi) | Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Upon obtaining their analytical expressions for the simplest case with C = 2, it is easy to

conjecture and then verify as we do in the proof below that the generic expressions are as

displayed in Lemma 9.

Lemma 9. In model (MAR1) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Y t+1

it−1, Xi) = 1{Yit = k}e
∑

c∈Y\{k} 1{Yit+1=c}(
∑

j∈Y (γcj−γkj)1(Yit−1=j)+γkk−γck+∆X′
ikt+1βk−∆X′

ict+1βc)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi) =

eγkk+X′
ikt+1βk+Aik

C∑
c=0

eγck+X′
ict+1βj+Aic

Proof. We have:

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= P (Yit = k|Y 0

i , Y
t−1
i1 , Xi, Ai)×∑

l∈Y

P (Yit+1 = l|Y 0
i , Y

t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×
∑
l∈Y

eγlk+X′
ilt+1βl+Ail

C∑
j=0

eγjk+X′
ijt+1βj+Aij

ϕ
k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×

 eγkk+X′
ikt+1βk+Aik

C∑
j=0

eγjk+X′
ijt+1βj+Aij

+
∑

l∈Y\{k}

eγlk+X′
ilt+1βl+Ail

C∑
j=0

eγjk+X′
ijt+1βj+Aij

e(
∑C

j=0(γlj−γkj)1(Yit−1=j)+γkk−γlk+∆X′
ikt+1βk−∆X′

ilt+1βl)
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=
e
∑C

c=0 γkc1(Yit−1=c)+X′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

× eγkk+X′
ikt+1βk+Aik

C∑
j=0

eγjk+X′
ijt+1βj+Aij

+
eγkk+X′

ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×
∑

l∈Y\{k}

1
C∑

j=0

eγjk+X′
ijt+1βj+Aij

e
∑C

j=0 γlj1(Yit−1=j)+X′
iltβl+Ail

=
eγkk+X′

ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

1
C∑

j=0

eγjk+X′
ijt+1βj+Aij

∑
l∈Y

e
∑C

j=0 γlj1(Yit−1=j)+X′
iltβl+Ail

=
eγkk+X′

ikt+1βk+Aik

C∑
j=0

eγjk+X′
ijt+1βj+Aij

= π
k|k
t (Ai, Xi)

From there, if T ≥ 4, we can draw once again on the partial fraction decomposition of

Appendix Lemma 6 to get more transition functions associated to the same transition prob-

abilities. Of course, we reiterate that the (multivariate) rational fraction structure of the

transition probabilities when the fixed effects are viewed as polynomials is essential to these

results. Lemma 10 gives their expressions and concludes Step 1).

Lemma 10. In model (MAR1) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for

all (c, k) ∈ Y2: µc,s(θ) =
∑C

j=1 γcj1(Yis−1 = j) +X ′
icsβc −X ′

i0sβ0,

κ
k|k
c,t (θ) = γck +X ′

ict+1βc −X ′
i0t+1β0, ω

k|k
t,s,c(θ) = 1− e(κ

k|k
c,t (θ)−µc,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ)) and define

the moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|k

θ (Y t+1
it−1, Xi)

Additionally, if T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying

T − 1 ≥ t > s1 > . . . > sJ ≥ 1, define analogously,

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}

+
∑

l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isj−1−1, Xi)

13



Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Proof. By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1,

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = 0|Yi0, Y s−1

i1 , Xi, Ai)

+
∑

l∈Y\{0}

ω
0|0
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
0|0
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]

=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
C∑
l=1

ω
0|0
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai

]
π
0|0
t (Ai, Xi)

=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
C∑
l=1

(
1− e(κ

0|0
l,t (θ)−µl,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

=
1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

= π
0|0
t (Ai, Xi)

The first line follows from the measurability of the weight ω
0|0
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the

definition of µc,s(θ) and follows from the law of iterated expectations and Lemma 9. The

third line makes use of the definition of κ
0|0
c,t (θ), ω

0|0
t,s,l(θ) and the normalization γc0 = γ0c =

0, A0c = 0 for all c ∈ Y . The penultime line uses Appendix Lemma 6.

Analogously, for all k ∈ Y \ {0},

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai)

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
k|k
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai

]
π
k|k
t (Ai, Xi)
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=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+

(
1− e−κ

k|k
k,t (θ)+µk,s(θ)

)
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

+
C∑
l=1
l ̸=k

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eκ

k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

= π
k|k
t (Ai, Xi)

For Step 2), we are free to take the difference of any pair of transition functions yielding the

same transition probability to form a valid moment function. A collection of linearly inde-

pendent moment functions can be constructed following Proposition 1, where we substitute

the AR(1) transition functions with their MAR(1) counterparts given in Lemmas 9-10.

5 Moment restrictions for a dynamic network forma-

tion model

In this section, we show how our methodology can also be fruitfully applied to analyze

dynamic network formation models in the spirit of Graham (2013), Graham (2016).

We are now interested in a setting where the undirected social ties of N ≥ 3 agents are

observed over t = 0, . . . , T periods. Assume that a large random sample of M such network

sequences are available to the econometrician, and that link formation from t ≥ 1 evolves

according to:

Dijt = 1{γ0Dijt−1 + β0Rijt−1 +X ′
ijtδ0 + Aij − ϵijt ≥ 0} (4)
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Here, Dijt ∈ {0, 1} encodes the presence or absence of a link between agent i and agent

j at time t, Rijt =
∑N

k=1DiktDjkt is the number of friends that i and j have in common

at t, Xijt = Xjit are strictly exogenous covariates (e.g distances, time effects), Aij = Aji

is a dyad-specific, time invariant, unobserved heterogeneity term, and ϵijt is an iid logistic

error. The parameters of interest are γ0, β0, δ0 which capture respectively state dependence

in friendships, transitivity (i.e the benefits of sharing friends in common), and observable

“homophily”. Let Dt denote the N × N matrix of social ties at t with ij-th entry Dijt.

Additionally, let D = (d1, . . . , dn) denote the set of all possible undirected networks of N

agents - with self-ties ruled out - with cardinality n =
(
N
2

)
. The initial network D0 at t = 0

is allowed to correlate freely with the matrix of fixed effects A with ij-th entry Aij and

regressors X = (X1, . . . , XT ) where Xt is the matrix of covariates at time t with ij-th entry

Xijt.

Graham (2013) studied the special case N = 3 without covariates and proved the iden-

tification of θ0 using a conditional likelihood argument. To address the general case with

regressors, it is helpful to note that rule (4) is in fact similar to the VAR(1) model studied

in the main text. This has immediate implications. First, Lemma 4 in the main text tells

us that

ϕ
d|d
θ (Dt+1, Dt, Dt−1, X) = 1{Dt = d}

× exp

∑
i<j

(Dijt+1 − dij)
(
γ(Dijt−1 − dij) + β(Rijt−1 − rij)−∆X ′

ijt+1β
)

is a transition function for π
d|d
t (A,X), the transition probability of switching from network

d to network d. Formally, this means:

E
[
ϕ
d|d
θ0
(Dt+1, Dit, Dt−1, X)|D0, D

t−1
1 , X,A

]
= π

d|d
t (A,X) =

∏
i<j

edij(γ0dij+β0rij+X′
ijtδ0+Aij)

1 + eγ0dij+β0rij+X′
ijtδ0+Aij

Then, if T ≥ 3, Lemma 5 tells us how to construct another set of transition functions

associated to π
d|d
t (A,X). For example, for t, s such that T − 1 ≥ t > s ≥ 1, we can consider

ζ
d|d
θ (Dt+1

t−1, D
s
s−1, X) = 1{Ds = d}+

∑
d′∈D\{d}

ω
d|d
t,s,d′(θ)1{Ds = d′}ϕd|d

θ (Dt+1, Dt, Dt−1, X)
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where ω
d|d
t,s,d′(θ) = 1− e

∑
i<j(d

′
ij−dij)

[
κ
d|d
ij,t(θ)−µij,s(θ)

]
with κ

d|d
ij,t = γdij + β0rij +X ′

ijtβ and µij,s =

γDijs−1 + βRijs−1 +X ′
ijsβ. This allows us to form n valid moment functions for the typical

case T = 3, given by:

ζ
d|d
θ (D3

1, D
1
0, X) = ϕ

d|d
θ (D3, D2, D1, X)− ζ

d|d
θ (D3

1, D
1
0, X)

In turn, this paves the way for an identification analysis of θ0 and its estimation by GMM

leveraging our sample of M iid networks.

6 Additional results for the empirical application

Alongside the EL estimator, we computed the iterated GMM estimator of Hansen et al.

(1996). Starting from an initial consistent estimator θ̃0 (we used the equally-weighted GMM

estimator), it can be described as

θ̃ = lim
s→∞

θ̃s

θ̃s = argmin
θ

mN(θ)
′ΩN(θ̃s−1)

−1mN(θ)

where mN(θ) = 1
N

∑N
i=1mθ(Yi, Y

0
i , Xi) and ΩN(θ) = 1

N

∑N
i=1mθ(Yi, Y

0
i , Xi)mθ(Yi, Y

0
i , Xi)

′.

While asymptotically equivalent to the 2-step GMM estimator, Hansen and Lee (2021) rec-

ommended its use over it for a few practical reasons. First, θ̃ eliminates the arbitrariness

in the choice of the initial weight matrix of 2-step GMM estimators. Second, because the

iteration sequence is a contraction, each iteration is approximately variance reducing in the

sense that: V ar(θ̂s) ≈ c2V ar(θ̂s−1) for some constant c < 1. Table 2 shows that the iterated

GMM estimates align closely with those obtained using the empirical likelihood approach.
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Table 2: Parameter estimates of the trivariate VAR(1) logit based on NLSY data continued

Empirical
Likelihood

Iterated
GMM

A M HD A M HD
(I) (II) (III) (IV) (V) (VI)

γm1 0.48 -0.06 0.38 0.36 -0.09 0.30
(0.13) (0.21) (0.33) (0.12) (0.21) (0.34)

γm2 0.29 0.83 0.49 0.18 0.78 0.52
(0.20) (0.14) (0.24) (0.19) (0.14) (0.24)

γm3 -0.29 0.19 0.48 -0.28 0.10 0.48
(0.31) (0.22) (0.23) (0.30) (0.22) (0.23)

age 0.09 -0.09 0.03 0.05 -0.11 0.08
(0.05) (0.07) (0.10) (0.05) (0.07) (0.09)

college 0.25 0.20 0.31 0.28 0.20 0.30
(0.14) (0.15) (0.26) (0.12) (0.15) (0.26)

LR Test 56.45
“Wald” Test 54.38

Notes: The convergence criterion for the iterated GMM procedure is
∥∥∥θ̂s+1 − θ̂s

∥∥∥ < 10−5. Standard errors

are reported in parenthesis. Columns titled “A”,“M”, “HD” report parameter estimates for the alcohol layer,

marijuana layer, and hard-drugs layer of the trivariate VAR(1) logit model.
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