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Abstract

Dynamic logit models are popular tools in economics to measure state dependence.

This paper introduces a new method to derive moment restrictions in a large class

of such models with strictly exogenous regressors and fixed effects. We exploit the

common structure of logit-type transition probabilities and elementary properties of

rational fractions, to formulate a systematic procedure that scales naturally with model

complexity (e.g the lag order or the number of observed time periods). We detail the

construction of moment restrictions in binary response models of arbitrary lag order as

well as first-order panel vector autoregressions and dynamic multinomial logit models.

Identification of common parameters and average marginal effects is also discussed for

the binary response case. Finally, we illustrate our results by studying the dynamics of

drug consumption amongst young people inspired by Deza (2015).
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1 Introduction

The analysis of state dependence is a classic and important topic in many areas of economics.

Several discrete processes such as welfare and labor force participation manifest strong serial

persistence, and economists have sought various methods to unravel the underlying factors.

In this paper, we reexamine the estimation of one notable set of models employed for this pur-

pose: discrete choice models with lagged dependent variables, strictly exogenous regressors,

fixed effects and logistic errors. We shall refer to this class of models as dynamic fixed effects

logit models (DFEL) throughout. Specifications of this kind are used to discriminate between

“structural” state dependence, i.e the causal effect of past choices on current outcomes, and

heterogeneity, i.e the serial correlation induced by unobserved individual attributes (Heck-

man (1981)). An example of this approach is the analysis of welfare participation in Chay

et al. (1999). There has been considerable interest in this family of panel data models in

econometrics, with a recent surge in attention following new developments reported in Honoré

and Weidner (2020). One general reason is that DFEL models stand out as a rare case of

nonlinear dynamic panel data models for which solutions to the incidental parameters prob-

lem (Neyman and Scott (1948)) and initial conditions problem (e.g Heckman (1981)) have

been known to exist in short panels1.

In the “pure” version of the basic model which abstracts from covariates other than a first

order lag, Cox (1958), Chamberlain (1985) and Magnac (2000) showed that the autoregres-

sive parameter can be consistently estimated by conditional likelihood. This approach relies

on the existence of a sufficient statistic linked to the logistic assumption to eliminate the fixed

effect. In an important subsequent paper, Honoré and Kyriazidou (2000) extended this idea

to a setting with strictly exogenous regressors and showed that the conditional likelihood

approach remains viable if one can further condition on the regressors being equal in specific

periods. This strategy was also found to be effective in dynamic multinomial logit mod-

els (Honoré and Kyriazidou (2000)), panel vector autoregressions (Honoré and Kyriazidou

(2019)) and dynamic ordered logit models (Muris et al. (2020). At the same time, it has also

1The incidental parameters problem refers to the general inconsistency of maximum likelihood in short
panels. The initial conditions problem refers to the general difficulty of formulating a correct conditional
distribution for the initial observations given the fixed effects and covariates.
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been noted that the necessity to be able to “match” the covariates imposes two limitations for

the conditional likelihood approach: it inherently rules out time effects and implies rates of

convergence slower than
√
N for continuous explanatory variables. Furthermore, calculations

from Honoré and Kyriazidou (2000) suggested that it does not easily extend to models with

a higher lag order. These shortcomings have motivated the search for alternative methods of

estimation.

Recently, Kitazawa et al. (2013, 2016) and Kitazawa (2022) revisited the AR(1) logit

model - autoregressive of order one - of Honoré and Kyriazidou (2000) and proposed a trans-

formation approach that deals with the fixed effects without restricting the nature of the

covariates besides the conventional assumption of strict exogeneity. Their methodology leads

to moment restrictions that can serve as a basis to estimate the model parameters at
√
N -rate

by GMM; even with continuous regressors. In parallel work, Honoré and Weidner (2020) also

derived moment conditions for the AR(1), AR(2) and AR(3) logit models in panels of specific

length using the functional differencing technique of Bonhomme (2012). Their approach is

partly numerical and relies on symbolic computing (e.g Mathematica) to obtain analytical

expressions but has a wider scope of potential applications, e.g dynamic ordered logit speci-

fications (Honoré et al. (2021)). In another recent paper, Dobronyi et al. (2021), the authors

analyze the full likelihood of AR(1) and AR(2) logit models with discrete covariates under

a new angle that reveals a connection to the truncated moment problem in mathematics.

Drawing on well established results in that literature, they derive moment equality and new

moment inequality restrictions that fully characterize the sharp identified set.

In this paper, we introduce a new systematic approach to construct moment restrictions

in DFEL models with additive fixed effects, i.e when fixed effects are heterogeneous “in-

tercepts”. This class of models encompasses most specifications studied in prior work but

excludes models with heterogeneous coefficients on lagged outcomes and/or regressors as in

Chamberlain (1985) and Browning and Carro (2014). Unlike some recent competing ap-

proaches, we do not require numerical experimentation nor symbolic computing. Rather, as

we shall see in examples, we exploit the common structure of logit-type transition probabil-

ities and elementary properties of rational fractions, to obtain analytic expressions for the

identifying moments. We shall focus our attention on deriving valid moment functions for
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AR(p) models with arbitrary lag order p ≥ 1 as well as first-order panel vector autoregres-

sions and dynamic multinomial logit models (Magnac (2000)).

Our methodology exploits two key observations. First, the transition probabilities of

logit-type models can often be expressed as conditional expectations of functions of observ-

ables and common parameters given the initial condition, the regressors and the fixed effects.

We shall refer to these moment functions as transition functions. They have the important

feature of not depending on individual fixed effects. Second, as soon as T ≥ p+ 2, where T

denotes the number of observations post initial condition, many transition probabilities in pe-

riods t ∈ {p+1, . . . , T −1} admit at least two distinct transition functions. The combination

of these two features motivates a two-step approach to obtain moment restrictions in panels

of adequate length. In the first step, we shall compute the model transition functions. Then,

the second step will simply consist in differencing two transition functions associated to the

same transition probability. We show that a careful application of this procedure delivers

all the moment equality restrictions available in the binary response case. We shall further

elaborate on these steps in examples and use the resulting moment functions to derive new

identification results. At a high level, the approach we advocate in this paper consists in

solving a sequence of problems with identical structure period by period instead of solving

directly a large system of equations based on the model full likelihood as in Honoré and Wei-

dner (2020) and Dobronyi et al. (2021). As a consequence, our procedure remains tractable

when the number of time periods increases and in models with higher order lags.

Besides the aforementioned papers, our work also connects to a line of research studying

the identification of features of the distribution of fixed effects in discrete choice models.

One branch in this literature has focused on developing general optimization tools to com-

pute sharp numerical bounds on average marginal effects. This includes most notably the

linear programming method of Honoré and Tamer (2006), recently adapted by Bonhomme

et al. (2023) to the case of sequentially exogenous covariates, and the quadratic programming

method of Chernozhukov et al. (2013). A second branch in this literature has sought instead

to harness the specificities of logit models to obtain simple analytical bounds. In static logit

models, Davezies et al. (2021) exploit mathematical results on the moment problem to formu-

late sharp bounds on the average partial effects of regressors on outcomes. In DFEL models,
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Aguirregabiria and Carro (2021) are the first to prove the point identification of average

marginal effects in the baseline AR(1) logit model when T ≥ 3. In related work, Dobronyi

et al. (2021) make use of their moment equality and moment inequality restrictions to es-

tablish sharp bounds on functionals of the fixed effects such as average marginal effects and

average posterior means in AR(1) and AR(2) specifications. We complement these results

as a byproduct of our methodology: average marginal effects and their variants in AR(p)

models, with arbitrary p ≥ 1 are merely differences of average transition functions.

The remainder of the paper is organized as follows. Section 2 presents the setting and our

main objective. Section 3 introduces some terminology and gives an outline of our procedure

to construct moment restrictions. Section 4 implements our approach in AR(p) logit models

with p ≥ 1 and discusses identification of model parameters and average marginal effects.

The semiparametric efficiency bound for the AR(1) is also presented for the base case of four

waves of data. Section 5 discusses extensions to the VAR(1) and the dynamic multinomial

logit model with one lag, MAR(1) for short. In Section 6, we present an empirical illustration

on the dynamics of drug consumption amongst young people and Section 7 offers conclud-

ing remarks. A complementary set of Monte Carlo simulations showing the small sample

performance of GMM estimators based on our moment restrictions is available in Appendix

Section D. Proofs are gathered in the Appendix.

2 Setting, assumptions and objective

Let i = 1, . . . , N denote a population index and t = 0, . . . , T be an index for time. We

study DFEL models which may be viewed as threshold-crossing econometric specifications

describing a discrete outcome Yit through a latent index involving lagged outcomes (e.g Yit−1),

strictly exogenous regressors Xit, an individual-specific time-invariant unobservable Ai and

an error term ϵit. The canonical example is the AR(1) model:

Yit = 1{γ0Yit−1 +X ′
itβ0 + Ai − ϵit ≥ 0}, t = 1, . . . , T

and we shall concentrate more broadly on cases where Ai is additively separable from the

other explanatory variables. An initial condition that we will generically denote Y 0
i com-
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pletes such models to enable dynamics. The common parameter θ0 is one target of interest

and governs the influence of lagged outcomes and the regressors on the contemporaneous

outcome. Other quantities of interest include counterfactual parameters such as average

marginal effects.

Throughout, we leave the joint distribution of (Y 0
i , Xi, Ai) unrestricted where Xi =

(Xi1, . . . , XiT ) and thus refer to Ai as a fixed effect in common with the literature. The

schocks ϵit are assumed to be serially independent logistically distributed, independent of

(Y 0
i , Xi, Ai), except for the MAR(1) model where they are instead extreme value distributed.

Finally, we shall assume that (Yi, Y
0
i , Xi, Ai) are jointly i.i.d across individuals.

The data available to the econometrician consists of the initial condition Y 0
i , the outcome

vector Yi = (Yi1, . . . , YiT ), and the covariates Xi for all N individuals. Interest centers

primarily on the identification and estimation of θ0 in short panels, i.e for fixed T . To

this end, the chief objective of this paper is to show how to construct moment functions

ψθ(Yi, Y
0
i , Xi) free of the fixed effect parameter that are valid in the sense that:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi, Ai
]
= 0 (1)

When this is possible, the law of iterated expectations implies the conditional moment:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi

]
= 0

which can in turn be leveraged to assess the identifiability of θ0 and form the basis of a GMM

estimation strategy. This is the central idea underlying functional differencing (Bonhomme

(2012)) and was applied by Honoré and Weidner (2020) to derive valid moment conditions

for a class of dynamic logit models with scalar fixed effects. We borrow the same insight

but instead of searching for solutions numerically on a case-by-case basis, we propose a

complementary systematic algebraic procedure to recover the model’s valid moments 2. In

doing so, we flesh out the mechanics implied by the logistic assumption which in turn suggest

a blueprint to deal with estimation of general DFEL models. For example, we are able

2Dobronyi et al. (2021) and Kitazawa (2022) also have an algebraic approach but our methodologies are
very different. The first paper uses the full likelihood of the model and focuses on the AR(1) and special
instances of the AR(2) model. The second paper has a transformation approach adapted to the AR(1) model.
Our emphasis here is primarily on developing an approach that is tractable for a large class of models.
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to characterize the expressions of valid moment functions in AR(p) models for arbitrary

p > 1 which to the best of our knowledge is a new result in the literature. Furthermore,

our approach carries over to multidimensional fixed effect specifications: VAR(1), dynamic

network formation models and the MAR(1) in which searching for moments numerically is

cumbersome or intractable.

In what follows, we shall use the shorthand Y t2
it1

= (Yit1 , . . . , Yit2) to denote a collection of

random variables over periods t1 to t2 with the convention that Y t2
it1

= ∅ if t1 > t2. Likewise,

we may use the notation yt2t1 = (yt1 , . . . , yt2) to denote any (t2−t1)-dimensional vector of reals

with the convention yt2t1 = ∅ for t1 > t2. Elements 1n and 0n shall refer to the n-dimensional

vectors of ones and zeros respectively. The support of the outcome variable Yit shall be

denoted Y . We let ∆ denote the first-differencing operator so that ∆Zit = Zit−Zit−1 for any

random variable Zit and make use of the notation Zits = Zit −Zis for s ̸= t to accommodate

long differences. We use 1{.} for the indicator function; Im(f), ker(f), rank(f) to denote

the image, the nullspace and the rank of a linear map f .

3 Outline of the procedure to derive valid moment

functions

Let T ≥ 1. Given an initial condition y0 ∈ Yp, p ≥ 1 being the lag order of the model,

and strictly exogenous regressors Xi ∈ RKx×T , we denote the (one-period ahead) transition

probability in period t ≥ 1 from state (lt1, y
0) ∈ Y t × Yp to state k ∈ Y as:

π
k|lt1,y0
t (Ai, Xi) = π

k|lt1,y0
t (Ai, Xi; θ0) ≡ P (Yit+1 = k | Y 0

i = y0, Y t
i1 = lt1, Xi, Ai)

With p lags, the markovian nature of the models considered in this paper imply that

π
k|lt1,y0
t (Ai, Xi) will not depend on the entire path of past outcomes but only on the value of

the most recent p outcomes. For instance, in an AR(1) model where p = 1, we have:

π
k|lt1,y0
t (Ai, Xi) = P (Yit+1 = k | Y 0

i = y0, Y t
i1 = lt1, Xi, Ai) = P (Yit+1 = k | Yit = lt, Xi, Ai)
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and thus we will suppress the dependence on (y0, l1, . . . , lt−1) and write π
k|lt
t (Ai, Xi). We shall

proceed analogously for the more general case p ≥ 1.

We call a transition function associated to a transition probability π
k|lt1,y0
t (Ai, Xi) any

moment function ϕ
k|lt1,y0
θ (Yi, Y

0
i , Xi) of the data and the common parameters verifying:

E
[
ϕ
k|lt1,y0
θ0

(Yi, Y
0
i , Xi) |Y 0

i , Xi, Ai

]
= π

k|lt1,y0
t (Ai, Xi) (2)

With these notions in hand, we are ready to describe our two-step approach to derive valid

moment functions in the sense of equation (1). In Step 1), we begin by computing the

model’s transition functions. Our procedure requires a minimum of T = p + 1 periods of

observations to accommodate arbitrary regressors and initial condition. In this case, we can

get analytical formulas for the transition functions associated to the transition probabilities

in period t = p and Theorem 1 and Theorem 3 below imply that they are unique. However,

this is not immediately helpful to get moment (equality) restrictions on θ0. We require one

more period. As soon as T ≥ p+2, we explain how to construct distinct transition functions

associated to the same transition probabilities in periods t ∈ {p + 1, . . . , T − 1}. The key

ingredient is the use of partial fraction decompositions for rational fractions adapted to the

structure of the transition probabilities. It is then a matter of taking differences of two

transition functions associated to the same transition probability to obtain valid moment

functions; we refer to this last step as Step 2). The ensuing sections demonstrate this

procedure in scalar and multidimensional fixed effect models.

4 Scalar fixed effect models

4.1 Moment restrictions for the AR(1) logit model

For exposition, we begin with the baseline AR(1) logit model with fixed effects introduced

above:

Yit = 1{γ0Yit−1 +X ′
itβ0 + Ai − ϵit ≥ 0}, t = 1, . . . , T (3)

8



Here, Y = {0, 1}, θ0 = (γ0, β
′
0) ∈ R × RKx , the initial condition Y 0

i consists of the binary-

valued random variable Yi0 and Ai ∈ R.

4.1.1 The number of moment restrictions in the AR(1)

We start out by enumerating the moment restrictions implied by the model. This will provide

a means to assess the exhaustiveness of our approach. To this end, let Ey0,x denote the

conditional expectation operator mapping any function of the outcome variable Yi to its

conditional expectation given Yi0 = y0, Xi = x and the fixed effect Ai, i.e

Ey0,x : RYT −→ RR

ϕ(.; y0, x) 7−→ E
[
ϕ(Yi, y0, x)|Yi0 = y0, Xi = x,Ai = .

]
For example, for any y ∈ YT , Ey0,x

[
1{. = y}

]
yields the conditional probability of observing

history y for all possible values of the fixed effect, i.e:

Ey0,x
[
1{. = y}

]
= P (Yi = y|Yi0 = y0, Xi = x,Ai = .)

where P (Yi = y|Yi0 = y0, Xi = x,Ai = a) =
T∏
t=1

eyt(γ0yt−1+x′tβ0+a)

1+eγ0yt−1+x′tβ0+a
, ∀a ∈ R . Then, we have

the following result,

Theorem 1. Consider model (3) with T ≥ 1 and initial condition y0 ∈ Y. Suppose that for

any t, s ∈ {1, . . . , T − 1} and y, ỹ ∈ Y, γ0y + x′tβ0 ̸= γ0ỹ + x′sβ0 if t ̸= s or y ̸= ỹ. Then, the

family Fy0,T =
{
1, π

y0|y0
0 (., x), (π

0|0
t (., x), π

1|1
t (., x))T−1

t=1

}
of size 2T forms a basis of Im(Ey0,x)

and dim
(
ker(Ey0,x)

)
= 2T − 2T .

Theorem 1 formalizes the intuition that the transition probabilities summarize the parametric

component of the model: 2T histories are possible yet only 2T basis elements are necessary

to fully characterize their conditional probabilities. This follows from the observation that

when the covariate index 3 of each transition probability differ, the conditional probability

of each history y ∈ YT is a ratio of polynomials in ea, where the numerator has lower degree

than the denominator, and the later is a product of distinct irreducible terms. A sufficient

condition for this is that γ0 ̸= 0 and that one regressor is continuously distributed with

3We refer to the quantity γ0yt−1 + x′
tβ0 for a given period t.
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non-zero slope. In turn, standard results on partial fraction decompositions ensure that this

ratio can be expressed as a unique linear combination of transition probabilities. To finally

conclude that Fy0,T is a basis of Im(Ey0,x), we leverage upcoming results demonstrating that

the transition probabilities live in Im(Ey0,x) as expectations of transition functions.

Importantly, since ker(Ey0,x) is the set of valid moment functions verifying equation (1),

Theorem 1 tells us that the AR(1) model features 2T − 2T linearly independent moment

restrictions in general. This is a consequence of the rank nullity theorem for linear maps

with finite dimensional domains. The fact that 2T − 2T moment conditions are available for

the AR(1) appeared initially as a conjecture in Honoré and Weidner (2020) and was later

established by Dobronyi et al. (2021) using different arguments from here. They do not

emphasize the role of the transition probabilities. Our ideas extend naturally to the case

of arbitrary lags which was hitherto an open problem. We discuss this extension in Section

4.4.1.

Remark 1 (Counting moments in logit models). The idea of decomposing the conditional

probabilities of all choice histories in a basis provides a useful device to infer a lower bound

on the number of moment restrictions in logit models. If one can further prove that elements

of this basis belong to the image of the conditional expectation operator, then this lower

bound coincides with the exact number of moment restrictions.

• In the static panel logit model of Rasch (1960), γ0 = 0 and we have π
1|1
t (., x) =

1 − π
0|0
t (., x). Thus, provided that x′tβ0 ̸= x′sβ0 for all t ̸= s, FT =

{
1, (π

0|0
t (., x))T−1

t=0

}
spans the image of the conditional expectation operator. This implies at least 2T −

(T + 1) moment restrictions. It turns out that 2T − (T + 1) is precisely the total

number of moment restrictions for this model. This follows from Remark 6 below

which characterizes the transition functions associated to each element of FT .

• In the Cox (1958) model, γ0 ̸= 0 and β0 = 0 and the transition probabilities

are: π0|0(a) = 1
1+ea

and π1|1(a) = eγ0+a

1+eγ0+a (or equivalently π0|1(a) = 1
1+eγ0+a ).

See the next section for further details. In this case, the family Fy0,T ={
1,
(
π0|0(.)j, π0|1(.)j

)T−1

j=1
, π0|y0(.)T

}
which consists of powers of the time-invariant

transition probabilities spans the image of the conditional expectation operator. Since
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|Fy0,T | = 2T , the model produces at least 2T − 2T linearly independent moment re-

strictions.

Remark 2 (A matrix perspective). Since Ey0,x is a linear map, it admits a unique 2T ×

2T matrix representation Λy0,x where each row translates the conditional probability of a

choice history y ∈ YT in terms of the transition probabilities of Fy0,T
4. From this point

of view, valid moments correspond to 2T -vectors ψ in the left nullspace of Λy0,x, meaning

ψ′Λy0,x = 0. Constructing Λy0,x and then solving this 2T linear system of equations in 2T

unknowns directly is straightforward using symbolic tools when T is “small” (e.g Dobronyi

et al. (2021), Honoré and Weidner (2020)) but is computationally impractical otherwise.

Instead, we propose a constructive approach to back out analytic expressions of the valid

moment functions that is tractable for arbitrary values of T .

Having clarified the total count of moment restrictions in the AR(1) logit model, we next

discuss how to construct them with our two-step procedure.

4.1.2 Construction of valid moment functions for the pure model

In the absence of exogenous regressors, model (3) simplifies to:

Yit = 1{γ0Yit−1 + Ai − ϵit ≥ 0}, t = 1, . . . , T (4)

which was first introduced by Cox (1958) and then revisited in Chamberlain (1985), Magnac

(2000). These papers established the identification of γ0 for T ≥ 3 via conditional likelihood

based on the insight that (Yi0,
∑T−1

t=1 Yit, YiT ) are sufficient statistics for the fixed effect. Our

methodology is conceptually different as we seek to directly construct moment functions ver-

ifying equation (1).

For what follows, it is helpful to remember that the individual-specific transition proba-

bility from state l to state k is time-invariant and given by:

πk|l(Ai) = P (Yit+1 = k|Yit = l, Ai) =
ek(γ0l+Ai)

1 + eγ0l+Ai
, ∀(l, k) ∈ Y

4Entries of this matrix may be found using for example the identities in Appendix Lemma 8 or any other
standard textbook tools for rational fractions.
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Step 1). We shall begin by deriving the transition functions for π0|0(Ai) and π1|1(Ai).

Observe that π1|0(Ai) and π
0|1(Ai) are effectively redundant since probabilities sum to one.

A natural starting place is to investigate the case T = 2, i.e 2 periods of observations after

the initial condition. Recalling definition (2), we search for ϕ
0|0
θ (Yi2, Yi1, Yi0), respectively

ϕ
1|1
θ (Yi2, Yi1, Yi0), whose conditional expectation given (Yi0, Ai) yields π0|0(Ai), respectively

π1|1(Ai). For the purposes of illustration and to show the kind of calculations arising broadly

in DFEL models, let us derive ϕ
0|0
θ (Yi2, Yi1, Yi0). By Bayes’s rule:

E
[
ϕ
0|0
θ (Yi2, Yi1, Yi0) | Yi0 = y0, Ai = a

]
=

1∑
y2=0

1∑
y1=0

P (Yi2 = y2|Yi1 = y1, Ai = a)P (Yi1 = y1|Yi0 = y0, Ai = a)ϕ
0|0
θ (y2, y1, y0)

=
eγ0y0+a

1 + eγ0y0+a

(
eγ0+a

1 + eγ0+a
ϕ
0|0
θ (1, 1, y0) +

1

1 + eγ0+a
ϕ
0|0
θ (0, 1, y0)

)
+

1

1 + eγ0y0+a

(
ea

1 + ea
ϕ
0|0
θ (1, 0, y0) +

1

1 + ea
ϕ
0|0
θ (0, 0, y0)

)
where the second equality uses the logistic hypothesis. By quick inspection, we see that

the terms in the first parenthesis have (1+eγ0+a) in their denominator unlike π0|0(Ai). Because

−e−γ0 is not a pole of π0|0(Ai)
5, we conclude that ϕ

0|0
θ (1, 1, y0) = ϕ

0|0
θ (0, 1, y0) = 0. This first

deduction leaves us with

E
[
ϕ
0|0
θ (Yi2, Yi1, Yi0) | Yi0 = y0, Ai = a

]
=

1

1 + eγ0y0+a

(
ea

1 + ea
ϕ
0|0
θ (1, 0, y0) +

1

1 + ea
ϕ
0|0
θ (0, 0, y0)

)
Now, since π0|0(Ai) does not depend on y0, we must cancel the denominator (1 + eγ0y0+a).

To achieve this, we must set: ϕ
0|0
θ0
(1, 0, y0) = C0e

γ0y0 , ϕ
0|0
θ0
(0, 0, y0) = C0 for some constant

C0 ∈ R \ {0}. Then,

E
[
ϕ
0|0
θ0
(Yi2, Yi1, Yi0)|Yi0 = y0, Ai = a

]
= C0

1

1 + ea

and C0 = 1 is the appropriate normalization to obtain the desired transition function. Of

course, the exact same logic applies for ϕ
1|1
θ0
(Yi2, Yi1, Yi0) and π

1|1(Ai).

This short calculation provides a useful recipe for the general case T ≥ 2. We learned

5A pole of a rational function is a root of its denominator. Formally, we are substituting u = ea and we
are extending π0|0(u) to the real line.
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that we can search for functions of three consecutive outcomes ϕ
k|k
θ (Yit+1, Yit, Yit−1) such that:

ϕ
k|k
θ (Yit+1, Yit, Yit−1) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1) | Yi0, Y t−1
i1 , Ai

]
= πk|k(Ai)

The first restriction is a functional form that eliminates terms with inadequate poles after

taking expectations. The second restriction is a normalization condition to match the desired

transition probability. Following this argument, we arrive at the expressions in Lemma 1.

Lemma 1. In model (4) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1) = (1− Yit)e

γYit+1Yit−1

ϕ
1|1
θ (Yit+1, Yit, Yit−1) = Yite

γ(1−Yit+1)(1−Yit−1)

Then:

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1)|Yi0, Y t−1

i1 , Ai

]
= π0|0(Ai) =

1

1 + eAi

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1)|Yi0, Y t−1

i1 , Ai

]
= π1|1(Ai) =

eγ0+Ai

1 + eγ0+Ai

Remark 3 (Connection to Kitazawa). Interestingly, Lemma 1 is a reformulation of results

first shown by Kitazawa et al. (2013, 2016), Kitazawa (2022), albeit with a very different logic

than the calculations displayed above. We set out the connection between our respective

approaches in Section 4.3 where we also discuss the case with exogenous regressors.

Step 2). The second step in the agenda is the construction of valid moment functions.

Because the transition probability of the model are time-invariant, one trivial way to achieve

this is to consider the pairwise difference of ϕ
k|k
θ (Yit+1, Yit, Yit−1) and ϕ

k|k
θ (Yis+1, Yis, Yis−1) for

any feasible s ̸= t. This is the content of Proposition 1. We will need a minimum of four total

periods of observations, which coincides with the requirements of the conditional likelihood

approach.

Proposition 1. In model (4) with T ≥ 3, let

ψ
k|k
θ (Y t+1

it−1, Y
s+1
is−1) = ϕ

k|k
θ (Yit+1, Yit, Yit−1)− ϕ

k|k
θ (Yis+1, Yis, Yis−1)

13



for all k ∈ Y, t ∈ {2, . . . , T − 1} and s ∈ {1, . . . , t− 1}. Then,

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s+1
is−1)|Yi0, Y s−1

i1 , Ai

]
= 0

Remark 4 (Efficient GMM). Given that the conditional likelihood is semi-parametrically

efficient for T = 3 (Gu et al. (2023), Hahn (2001)), it is natural to ask whether the approach

advocated here accounts for all the information in the model in that case. It turns out that it

does. Specifically, letting sci(θ) denote the conditional scores when y0 = 0 as in Hahn (2001),

we have:

sci(γ0) =
1

(1 + eγ0)(e−γ0 − 1)

(
ψ

0|0
θ (Y 3

i1, Y
2
i1, 0) + ψ

1|1
θ (Y 3

i1, Y
2
i1, 0)

)
where the right-hand side corresponds to the efficient moment for the moment restriction

E
[
ψθ(Y

3
i1, Y

2
i0)|Yi0 = 0

]
= 0, ψθ(Y

3
i1, Y

2
i1, 0) = (ψ

0|0
θ (Y 3

i1, Y
2
i1, 0), ψ

1|1
θ (Y 3

i1, Y
2
i1, 0))

′.

4.1.3 Construction of valid moment functions with strictly exogenous regressors

In this subsection, we move on to the AR(1) logit model with strictly exogenous covariates

characterized by equation (3).

Step 1). We employ the same shortcut recipe as in the “pure” case and begin by looking

for moment functions ϕ
0|0
θ (.) and ϕ

1|1
θ (.) verifying:

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1, Xi)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi), k ∈ Y

where this time

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, Xi, Ai) =

ek(γ0l+X
′
it+1β0+Ai)

1 + eγ0l+X
′
it+1β0+Ai

, ∀(k, l) ∈ Y2

The same simple calculations described just above lead to the expressions in Lemma 2. The

only (expected) change is the appearance of a new term +/ − ∆X ′
it+1β which accounts for

the presence of covariates in the model.
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Lemma 2. In model (3) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

Yit+1(γYit−1−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+∆X′
it+1β)

Then:

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi) =

1

1 + eAi+X′
it+1β0

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi) =

eγ0+X
′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

At this point, it is important to highlight that unlike previously, the transition probabilities

are covariate-dependent. The upshot is that the naive difference of ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)

and ϕ
k|k
θ (Yis+1, Yis, Yis−1, Xi) for s ̸= t no longer leads to valid moment functions in general.

Indeed, while Lemma 2 ensures that

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)− ϕ

k|k
θ (Yis+1, Yis, Yis−1, Xi)|Yi0, Xi, Ai

]
= π

k|k
t (Ai, Xi)− πk|ks (Ai, Xi)

clearly, π
k|k
t (Ai, Xi) − π

k|k
s (Ai, Xi) ̸= 0 when X ′

it+1β0 ̸= X ′
is+1β0

6. Thus, a different logic is

required in the presence of explanatory variables other than a first order lag.

The key, as foreshadowed in Section 3 is that as soon as T ≥ 3, it is possible to construct

transition functions other than ϕ
k|k
θ (Y t+1

it−1, Xi) also mapping to π
k|k
t (Ai, Xi) in time periods

t ∈ {2, . . . , T − 1}. These new transition functions that we denote ζ
k|k
θ (.) to emphasize

their difference have a particular form. They consist of a weighted combination of past

outcome 1(Yis = k), 1 ≤ s < t, and the interaction of 1(Yis ̸= k) with any transition

function associated to π
k|k
t (Ai, Xi) having no dependence on outcomes prior to period s,

e.g ϕ
k|k
θ (Y t+1

it−1, Xi). This property follows from a partial fraction decomposition presented in

Lemma 8 that exploits the structure of the model probabilities under the logistic assumption.

It relates to the hyperbolic transformations ideas of Kitazawa (2022). In the sequel, we shall

see that this insight carries over to the AR(p) logit model with p > 1. Lemma 3 below gives

the “simplest” additional transition functions that one can construct when T ≥ 3 for the

6A matching strategy in the spirit of Honoré and Kyriazidou (2000) may still be applicable when in our
example Xit+1 = Xis+1. However, this is known to lead to estimators converging at rate less than

√
N for

continuous covariates and it rules out certain regressors such as time dummies and time trends.
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AR(1) model with exogenous regressors (the only ones when T = 3).

Lemma 3. In model (3) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let:

µs(θ) = γYis−1 +X ′
isβ

κ
0|0
t (θ) = X ′

it+1β, κ
1|1
t (θ) = γ +X ′

it+1β

ω
0|0
t,s (θ) = 1− e(κ

0|0
t (θ)−µs(θ)), ω

1|1
t,s (θ) = 1− e−(κ

1|1
t (θ)−µs(θ))

and define the moment functions:

ζ
0|0
θ (Y t+1

it−1, Y
s
is−1, Xi) = (1− Yis) + ω

0|0
t,s (θ)Yisϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s
is−1, Xi) = Yis + ω

1|1
t,s (θ)(1− Yis)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

Then,

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi) =

1

1 + eX
′
it+1β0+Ai

E
[
ζ
1|1
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi) =

eγ0+X
′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

When T ≥ 4, it turns out that we can build even more transition functions from those

given in Lemma 3 by repeating the same type of logic based on partial fraction expansions ;

Corollary 3.1 provides a recursive formulation.

Corollary 3.1. In model (3) with T ≥ 4, for any t and ordered collection of indices sJ1 ,

J ≥ 2, satisfying T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let

ζ
0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = (1− YisJ ) + ω

0|0
t,sJ

(θ)YisJ ζ
0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = YisJ + ω

1|1
t,sJ

(θ)(1− YisJ )ζ
1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

with weights ω
0|0
t,sJ

(θ), ω
1|1
t,sJ

(θ) defined as in Lemma 3. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi), ∀k ∈ Y

Step 2). Provided T ≥ 3, the difference between any transition functions associated to

the same transition probabilities in periods t ∈ {2, . . . , T − 1} constitutes a valid candidate

16



for (1). One particularly relevant set of valid moment functions for reasons explained below

is presented in Proposition 2.

Proposition 2. In model (3), for all k ∈ Y,

if T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1 , let

ψ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi),

if T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying T − 1 ≥ t > s1 >

. . . > sJ ≥ 1, let

ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi),

Then,

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= 0

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= 0

This family of moment functions has cardinality 2T −2T which by Theorem 1 is precisely

the number of linearly independent moment conditions available for the AR(1). To see this,

notice that for fixed (k, Yi0) ∈ Y2, and a given time period t ∈ {2, . . . , T − 1}, Proposition 2

gives a total of:

t−1∑
l=1

(
t− 1

l

)
= 2t−1 − 1

valid moment functions. This follows from a simple counting argument. First, we get
(
t−1
1

)
possibilities from choosing any s in {1, . . . , t − 1} to form ψ

k|k
θ (Y t+1

it−1, Y
s
is−1, Xi). To that,

we must add another
∑t−1

l=2

(
t−1
l

)
possibilities from choosing all feasible sequences sJ1 with

t − 1 ≥ s1 > s2 > . . . > sJ ≥ 1 to form ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi). Summing over

t = 2, . . . , T − 1 and multiplying by 2 to account for the two possible values for k delivers

the result:

2×
T−1∑
t=2

t−1∑
l=1

(
t− 1

l

)
= 2×

T−1∑
t=2

(2t−1 − 1) = 2T − 2T

Furthermore, there is evidence that the family is linearly independent. It is readily verified for
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T = 3 since the two valid moment functions produced by the model depend on two distinct

sets of choice histories. This can be seen from their unpacked expressions in equations (9) and

(10) in the Appendix. Unfortunately, this argument does not carry over to longer panels but

we have verified numerically that the linear independence property of this family continues

to hold for several different values of T ≥ 4. This suggests that our approach delivers all

the moment equality restrictions available in the AR(1) model with T periods post initial

condition 7.

Remark 5 (Symmetry). The transition functions and valid moment functions of the AR(1)

model share a special symmetry property. Indeed, by inspection the transition functions of

Lemma 2 verify

ϕ
0|0
θ (1− Yit+1, 1− Yit, 1− Yit−1,−Xi) = ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

It is not difficult to see that this symmetry, i.e substituting Yit by (1 − Yit) and Xit by

−Xit to obtain ϕ
1|1
θ (Y t+1

it−1, Xi) from ϕ
0|0
θ (Y t+1

it−1, Xi) transfers to the other transition functions

of Lemma 3, Corollary 3.1 and ultimately to the valid moment functions of Proposition 2.

This symmetry can be useful for computational purposes.

Remark 6 (Static logit). If γ0 = 0, model (3) specializes to the static panel logit model of

Rasch (1960) and our two-step approach is still applicable. For that case, Lemma 2 gives

two moment functions for T = 2:

ϕ
0|0
θ (Yi2, Yi1, Xi) = (1− Yi1)e

−Yi2∆X′
2β

ϕ
1|1
θ (Yi2, Yi1, Xi) = Yi1e

(1−Yi2)∆X′
i2β

such that E
[
ϕ
0|0
θ0
(Y 2

i1, , Xi)|Xi, Ai

]
= 1

1+eX
′
i2

β0+Ai
and E

[
ϕ
1|1
θ0
(Y 2

i1, Xi)|Xi, Ai

]
= eX

′
i2β0+Ai

1+eX
′
i2

β0+Ai
. It

follows that a valid moment function with two periods of observation is

ψθ(Yi2, Yi1, Xi) = ϕ
1|1
θ (Yi2, Yi1, Xi)− (1− ϕ

0|0
θ (Yi2, Yi1, Xi))

= (1− e−∆X′
i2β)

(
Yi1(1− Yi2)e

∆X′
i2β − (1− Yi1)Yi2

)
7This is not all the identifying content of the AR(1) specification since we know from Dobronyi et al.

(2021) that the model also implies moment inequality conditions.
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which is proportional to the score of the conditional likelihood based on the sufficient statistic

Yi1 + Yi2 (Rasch (1960), Andersen (1970), Chamberlain (1980)).

4.2 Semiparametric efficiency bound for the AR(1) with regressors

Honoré and Weidner (2020) gave sufficient conditions to identify θ0 = (γ0, β
′
0)

′ in the AR(1)

model with T = 3. A natural follow-up question is to ask how accurately can θ0 be estimated

in that case, or equivalently what is the semi-parametric information bound. In a corrigen-

dum to Hahn (2001), Gu et al. (2023) confirmed that the conditional likelihood estimator is

semiparametrically efficient for T = 3 in the “pure” AR(1) model. However, the characteri-

zation of the semiparametric efficiency bound and the question of what estimator attains it

remain unclear with covariates.

To answer these questions, let ψθ(Y
3
i1, Y

1
i0, Xi) = (ψ

0|0
θ (Y 3

i1, Y
1
i0, Xi), ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi))

′

where the two components correspond to the valid moment functions of Proposition 2 for

T = 3. Additionally, let D(Xi, y0) = E
[
∂ψθ0

(Y 3
i1,Y

1
i0,Xi)

∂θ′
|Yi0 = y0, Xi

]
and let Σ(Xi, y0) =

E
[
ψθ0(Y

3
i1, Y

1
i0, Xi)ψθ0(Y

3
i1, Y

1
i0, Xi)

′|Yi0 = y0, Xi

]
.

Assumption 1. In model (3) with T = 3 and initial condition y0 ∈ {0, 1}, the matrix

E
[
D(Xi, y0)Σ(Xi, y0)

−1D(Xi, y0)
′|Yi0 = y0

]
exists and is nonsingular.

With these notations in hand and under the mild conditions of Assumption 1, Theorem

2 clarifies that the efficient score coincides with the efficient moment for the conditional

moment problem: E
[
ψθ(Y

3
i1, Y

1
i0, Xi)|Yi0 = y0, Xi

]
= 0. Put differently, the maximal efficiency

with which θ0 can be estimated is V0(y0) = E[D(Xi, y0)Σ(Xi, y0)
−1D(Xi, y0)

′|Yi0 = y0]
−1.

This result is in accordance with Remark 4 which noted that the score of the conditional

likelihood without covariates is precisely the efficient moment implied by our conditional

moment restrictions in this case.

Theorem 2. Consider model (3) with T = 3. Fix an initial condition y0 ∈ {0, 1} and

suppose that Assumption 1 holds. Then, the semiparametric efficiency bound of θ0 is finite

and given by V0(y0) = E[D(Xi, y0)Σ(Xi, y0)
−1D(Xi, y0)

′|Yi0 = y0]
−1.

The proof of Theorem 2 only involves careful bookkeeping of some tedious algebra and an
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application of Theorem 3.2 in Newey (1990). Interestingly, Davezies et al. (2023) presented

analogous results in the static panel data case with three periods of observations.

4.3 Connections to other works on the AR(1) logit model

As indicated previously, there is a connection between our methodology and that of Kitazawa

(2022) for the AR(1) model. Indeed, after some algebraic manipulation, we can re-express

the transition functions of Lemma 2 (or Lemma 1 without covariates) as:

ϕ
0|0
θ (Y t+1

it−1, Xi) = 1− Yit − (1− Yit)Yit+1 + (1− Yit)Yit+1e
−∆X′

it+1β + δYit−1(1− Yit+1)Yit+1e
−∆X′

it+1β

ϕ
1|1
θ (Y t+1

it−1, Xi) = YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β + δ(1− Yit−1)Yit(1− Yit+1)e
∆X′

it+1β

where δ = (eγ − 1). Thus, the moment conditions of Lemma 2 imply that we can write:

Yit + (1− Yit)Yit+1 − (1− Yit)Yit+1e
−∆X′

it+1β0 − δ0Yit−1(1− Yit+1)Yit+1e
−∆X′

it+1β0 =
eX

′
it+1β0+Ai

1 + eX
′
it+1β0+Ai

+ ϵ
0|0
it

YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β0 + δ0(1− Yit−1)Yit(1− Yit+1)e
∆X′

it+1β0 =
eγ0+X

′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

+ ϵ
1|1
it

where E
[
ϵ
0|0
it |Yi0, Y t−1

i1 , Xi, Ai

]
= 0 and E

[
ϵ
1|1
it |Yi0, Y t−1

i1 , Xi, Ai

]
= 0. These expressions are

the so-called h-form and g-form of Kitazawa (2022) for model (3) and were originally obtained

through an ingenious usage of the mathematical properties of the hyperbolic tangent function.

The evident connection between the transition functions and the h-form and g-form offers

an interesting new perspective on the transformation approach of Kitazawa (2022) for the

AR(1) model. If we further define

Uit = Yit + (1− Yit)Yit+1 − (1− Yit)Yit+1e
−∆X′

it+1β − δYit−1(1− Yit+1)Yit+1)e
−∆X′

it+1β

Υit = YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β + δ(1− Yit−1)Yit(1− Yit+1)e
∆X′

it+1β

the two moment functions of Kitazawa (2022) for the AR(1) model write

ℏUit = Uit − Yit−1 − tanh

(
−γYit−2 + (∆Xit +∆Xit+1)

′β

2

)
(Uit + Yit−1 − 2UitYit−1)

ℏΥit = Υit − Yit−1 − tanh

(
γ(1− Yit−2) + (∆Xit +∆Xit+1)

′β

2

)
(Υit + Yit−1 − 2ΥitYit−1)
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which can be formulated in terms of our own moment functions as

ℏUit = − 2

2− ω
0|0
t,t−1(θ)

ψ
0|0
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

ℏΥit =
2

2− ω
1|1
t,t−1(θ)

ψ
1|1
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

Appendix Section B provides detailed derivations for the mapping between our two ap-

proaches. This last result indicates that our moment conditions essentially match those of

Kitazawa (2022) when T = 3. However, for T ≥ 4, Proposition 2 imply that there are further

identifying moments than those based solely on ℏUit and ℏΥit for the AR(1) model. Inter-

estingly, it turns out as we demonstrate in Appendix Section B that our moment functions

coincide exactly with those derived by Honoré and Weidner (2020) for the special case T = 3.

To the best of our knowledge, besides the AR(1) model and a few specific examples, the

structure of moment conditions in models with arbitrary lag order is not fully understood in

the literature. Building on Bonhomme (2012), Honoré and Weidner (2020) propose moment

functions for the AR(2) model up to T = 4 and the AR(3) model with T = 5 but no results

are offered beyond these special instances. Yet, this is of general interest not only to better

understand the properties of DFEL models but also for practical modelling and estimation

purposes. For example, Card and Hyslop (2005) argue in favor of using higher order logit

specifications to better fit the behavior of a control group in the context of a welfare ex-

periment. Relatedly, there are few results available for multivariate fixed effect models and

existing methods developed for the scalar case are likely to be difficult to adapt in practice

due to computational barriers. In the remaining sections, we show that our two-step ap-

proach addresses these issues by providing closed form expressions for the moment equality

conditions of these more complex models.

4.4 Moment restrictions for the AR(p) logit model, p > 1

Allowing for more than one lag is often desirable in empirical work to model persistent

stochastic processes and to better fit the data (e.g, Magnac (2000) on labour market histories,

Chay et al. (1999) and Card and Hyslop (2005) on welfare recipiency). To this end, we now

discuss how to extend our identification scheme to general univariate autoregressive models.
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We consider

Yit = 1

{
p∑
r=1

γ0rYit−r +X ′
itβ0 + Ai − ϵit ≥ 0

}
, t = 1, . . . , T (5)

for known autoregressive order p > 1 and vector of initial values Y 0
i =

(Yi−(p−1), . . . , Yi−1, Yi0)
′ ∈ Yp, with Ai ∈ R. Here, we let θ0 = (γ′0, β

′
0)

′ ∈ Rp+Kx . The

corresponding transition probabilities are:

π
k|lp1
t (Ai, Xi) = P (Yit+1 = k|Yit = l1, . . . , Yit−(p−1) = lp, Xi, Ai) =

ek(
∑p

r=1 γ0rlr+X
′
it+1β0+Ai)

1 + e
∑p

r=1 γ0rlr+X
′
it+1β0+Ai

and there will be moment restrictions attached to each of the 2p (non-redundant) transition

probabilities. Before detailing the specifics of their construction, we enumerate the moment

restrictions for this model as we did for the AR(1). This provides a way to ensure that we

are not leaving any information on the table.

4.4.1 Impossibility results and number of moment restrictions when p ≥ 1

Based on simulation evidence, Honoré and Weidner (2020) conjectured that AR(p) models

possess 2T−(T+p−1)2p linearly independent moment conditions in panels of sufficient length.

We prove this claim in Theorem 3 and establish that no moment restrictions for the common

parameters exist when T ≤ p + 1; that is with less than 2p + 1 periods of observations per

individual. To introduce the result formally, it is again convenient to consider the conditional

expectation operator mapping functions of histories Yi to their conditional expectation given

Y 0
i = y0, Xi = x and the fixed effect, i.e

E (p)

y0,x
: RYT −→ RR

ϕ(., y0, x) 7−→ E
[
ϕ(Yi, y

0, x)|Y 0
i = y0, Xi = x,Ai = .

]
so that for any y ∈ YT , E (p)

y0,x

[
1{. = y}

]
yields the conditional likelihood of history y for all

possible values of Ai in the AR(p) model. That is,

E (p)

y0,x

[
1{. = y}

]
= P (Yi = y|Y 0

i = y0, Xi = x,Ai = .) = a 7→
T∏
t=1

eyt(
∑p

r=1 γ0ryt−r+x′tβ0+a)

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

Then the following result holds:
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Theorem 3. Consider model (5) with T ≥ 1 and initial condition y0 ∈ Yp. Suppose that for

any t, s ∈ {1, . . . , T − 1} and y, ỹ ∈ Yp, γ′0y+ x′tβ0 ̸= γ′0ỹ+ x′sβ0 if t ̸= s or y ̸= ỹ. Then, the

family

Fy0,p,T =

1, π
y0|y0
0 (., x),

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1


forms a basis of Im

(
E (p)

y0,x

)
and therefore

1. If T ≤ p+ 1, rank
(
E (p)

y0,x

)
= 2T and dim

(
ker
(
E (p)

y0,x

))
= 0

2. If T ≥ p+2, rank
(
E (p)

y0,x

)
= (T − p+1)2p and dim

(
ker
(
E (p)

y0,x

))
= 2T − (T − p+1)2p

Theorem 3 generalizes Theorem 1 for AR(p) logit models with p > 1. It confirms the

basic intuition that all the parametric content lies in the transition probabilities, no mat-

ter the lag order. Specifically, the conditional probabilities of all choice histories are

spanned by the transition probabilities. In the basis Fy0,p,T , elements π
y0|y0
0 (., x) and{(

π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

correspond to transition probabilities that are af-

fected by the initial condition y0. In the AR(1) case, it reduces to π
y0|y0
0 (., x) (see Theorem

1). The remaining basis elements are free from the initial condition and correspond to the

collection of all transition probabilities in each period starting from t = p.

Theorem 3 is an implication of partial fraction decompositions and of the fact that the

transition probabilities of AR(p) models admit transition functions. This property is set out

in the following section. If T ≤ p+1, E (p)

y0,x is injective and no non-trivial moment conditions

can be found. Beyond this threshold, the rank nullity theorem which connects image and

nullspace of linear maps tells us that 2T − (T − p + 1)2p moment restrictions exist. Under

weaker conditions on the parameters or regressors then those of the theorem, the model may

admit additional moment conditions even with T ≤ p+ 1.

4.4.2 Construction of transition probabilities with p > 1

Having clarified that T = p+2 is the minimum number of periods required for the existence

of identifying moments, we are now ready to address the issue of their construction. The

23



blueprint generalizes that of the AR(1) model and can be summarized as follows:

1. Step 1)

(a) Start by obtaining analytical expressions of the unique transition functions for the

transition probability in period t = p when T = p + 1 8. Shift these expressions

by one period, two periods, three periods etc to get a set of transition functions

for period t ∈ {p+ 1, . . . , T − 1} when T ≥ p+ 2.

(b) Apply partial fraction decompositions to the expressions obtained in (a) for t ∈

{p + 1, . . . , T − 1} to generate other transition functions mapping to the same

transition probabilities.

2. Step 2). Take “adequate” differences of transition functions associated to the same

transition probability in periods t ∈ {p + 1, . . . , T − 1} to obtain valid moments that

are linearly independent.

Step 1) (a) is akin to how we started by getting closed form expressions for the transition

functions in period t = 1 for T = 2 in the one lag case and then deducted a general principle

for t ≥ 2 (see Section 4). From a technical perspective, this is the only part of the two-step

procedure that differs from the baseline AR(1). Indeed, Step 2) is fundamentally identical

and Step 1) (b) is also unchanged for the simple reason that the transition probabilities

keep the same functional form as before. That is, a logistic transformation of a linear index

composed of common parameters, the regressors and the fixed effect only. Hence, the same

partial fraction expansions apply. In light of those close similarities with the AR(1) and in

order to focus on the primary issues, we defer a discussion of Step 1)(b) and Step 2) to

Appendix Section C.

Theorem 4 provides the algorithm to compute the transition functions for Step 1) (a)

for arbitrary lag order greater than one. It is based on the insight that we can leverage

the transition functions of an AR(p − 1) and partial fraction decompositions to generate

the transition functions of an AR(p). A simple example is helpful to illustrate those ideas.

8The fact that the transition functions in period t = p are unique when T = p + 1 is a direct corollary
of Theorem 3. Otherwise, the difference of two distinct transition functions mapping to the same transition
probability would yield a valid moment which is a contradiction.
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Consider an AR(2) with T = 3 (i.e 5 observations in total) and suppose that we seek a

transition function associated to, say, the transition probability

π
0|0,1
2 (Ai, Xi) =

1

1 + eγ02+X
′
i3β0+Ai

The first ingredient of the theorem is to view the AR(2) model as an AR(1) model where

we treat the second order lag as an additional strictly exogenous regressor. This change

of perspective is advantageous since we already know how to deal with the single lag case.

In particular, Lemma 2 readily gives the transition function ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi) for the

transition probability π
0|0,Yi1
2 (Ai, Xi) = P (Yi3 = 0|Yi2 = 0, Yi1, Xi, Ai) in the sense that it

verifies:

E
[
ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)|Y 0

i , Yi1, Xi, Ai

]
= π

0|0,Yi1
2 (Ai, Xi)

This is an intermediate stage since ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi) does not quite map to the target

of interest; indeed π
0|0,Yi1
2 (Ai, Xi) depends on the random variable Yi1 unlike π

0|0,1
2 (Ai, Xi). To

make further progress, one would intuitively need to “set” Yi1 to unity to make the two transi-

tion probabilities coincide. We operationalize this idea by interacting ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)

and Yi1 to achieve the desired effect in expectation:

E
[
Yi1ϕ

0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi)|Y 0

i , Xi, Ai

]
= E

[
Yi1π

0|0,1
2 (Ai, Xi)|Y 0

i , Xi, Ai

]
=

1

1 + eγ02+X
′
i3β+Ai

eγ01Yi0+γ02Yi−1+X
′
i1β0+Ai

1 + eγ01Yi0+γ02Yi−1+X′
i1β0+Ai

Here, the first equality follows from the law of iterated expectations. Then, the second ingre-

dient of the theorem is a partial fraction expansion (Appendix Lemma 8) to turn this product

of logistic indices into π
0|0,1
2 (Ai, Xi). This last operation is analogous to how we constructed

sequences of transition functions in the AR(1) model. It ultimately tells us that the solution

is a weighted sum of (1 − Yi1) and Yi1ϕ
0|0
θ0
(Yi3, Yi2, Yi1, Yi0, Xi). Theorem 4 turns this proce-

dure into a recursive algorithm that computes the transition functions for any lag order p > 1.
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Theorem 4. In model (5) with T ≥ p+ 1, for all t ∈ {p, . . . , T − 1} and yp1 ∈ Yp , let

k
y1|yp1
t (θ) =

p∑
r=1

γryr +X ′
it+1β

k
y1|yk+1

1
t (θ) =

k+1∑
r=1

γryr +

p∑
r=k+2

γrYit−(r−1) +X ′
it+1β, k = 1, . . . , p− 2, if p > 2

ut−k(θ) =

p∑
r=1

γrYit−(r+k) +X ′
it−kβ, k = 1, . . . , p− 1

w
y1|yk+1

1
t (θ) =

[
1− e(k

y1|y
k+1
1

t (θ)−ut−k(θ))

]yk+1
[
1− e−(k

y1|y
k+1
1

t (θ)−ut−k(θ))

]1−yk+1

, k = 1, . . . , p− 1

and

ϕ
y1|yk+1

1
θ (Yit+1, Yit, Y

t−1
it−(p+k), Xi) =[

(1− Yit−k) + w
y1|yk+1

1
t (θ)ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)Yit−k

](1−y1)yk+1

×[
1− Yit−k − w

y1|yk+1
1

t (θ)
(
1− ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
(1− Yit−k)

](1−y1)(1−yk+1)

×[
Yit−k + w

y1|yk+1
1

t (θ)ϕ
y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)(1− Yit−k)

]y1(1−yk+1)

×[
1− (1− Yit−k)− w

y1|yk+1
1

t (θ)
(
1− ϕ

y1|yk1
θ (Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
Yit−k

]y1yk+1

, k = 1, . . . , p− 1

where

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

Then,

E
[
ϕ
y1|yp1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−1), Xi) |Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

and for k = 0, . . . , p− 2

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi) |Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi),

The remaining steps to complete the construction of valid moment functions are described
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at length in Appendix Section C. The end product is a family of (numerically) linearly

independent moment functions of size 2T − (T + 1− p)2p. By Theorem 3, this implies that

our two-step approach recovers all moment equality conditions in the model.

Remark 7. (Extensions) While the exposition emphasized model (5), our methodology

applies more broadly to models of the form

Yit = 1
{
g(Yit−1, . . . , Yit−p, Xit, θ0) + Ai − ϵit ≥ 0

}
, t = 1, . . . , T

where the lag order p > 1 is known and g(.) is known up to the finite dimensional parameter

θ0. We can thus incorporate interaction effects which are often of interest in applied work.

For instance, Card and Hyslop (2005) model welfare participation as a random effect AR(2)

logit process of the form

Yit = 1
{
γ01Yit−1 + γ02Yit−2 + δ0Yit−1Yit−2 +X ′

itβ0 + Ai − ϵit ≥ 0
}
, t = 1, . . . , T

where Ai either follows a normal distribution or a discrete distribution with few support

points. In this case, minor modifications of the results in this section will deliver moment

conditions for θ0 = (γ01, γ02, δ0, β
′
0)

′ that are robust to misspecifications of individual unob-

served heterogeneity. The key is that Ai enters additively in order to leverage the rational

fraction identities of Lemma 8.

4.5 Identification with more than one lag

This section discusses ways to leverage our methodology and moment restrictions to assess

the identifiability of common parameters. For ease of exposition, we concentrate on the

AR(2) logit model.

We start by briefly reexamining an identification result due to Honoré and Weidner (2020).

Using functional differencing, they proved (under some regularity conditions) that θ0 is iden-

tified with T = 3 provided Xi2 = Xi3 and that the initial condition Y 0
i = (Yi−1, Yi0) varies in

the population. Notice that this is not in contradiction to Theorem 3 since Xi2 = Xi3 and Y
0
i

“varying” constitute two violations of its key assumptions. It is therefore not unsurprising

that identifying moment exist in that case despite T < 4. To understand why, note that im-
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posingXi2 = Xi3 effectively amounts to equate the transition probabilities in period t = 2 and

in period t = 1 for adequate choices of the initial condition; e.g π
0|0,Yi0
1 (Ai, Xi) = π

0|0,0
2 (Ai, Xi)

provided that Yi0 = 0 and Xi2 = Xi3. In turn, this implies that differences of the correspond-

ing transition functions in periods t = 2 and t = 1 deliver valid moment functions to estimate

θ0 in certain subpopulations. In Appendix Section J.1, we show that this is an interpretation

of the moment conditions that Honoré and Weidner (2020) use to show point identification.

Because this identification argument hinges on matching covariates as in Honoré and

Kyriazidou (2000), it breaks down in the presence of certain types of regressors like an age

variable or a time trend. In fact, Dobronyi et al. (2021) showed that there are actually no

moment equality conditions available in the model with such regressors. This finding is con-

sistent with the intuition that we cannot match the transition probabilities in periods t = 1

and t = 2 in that case. However, with one additional period, i.e T = 4, we can leverage

the moment restrictions of Proposition 4 which are valid for free-varying regressors and any

initial condition. This leads to two possible approaches to inference. The first is to consider

the “identified set” ΘI of θ0 based on the four conditional moment restrictions implied by

the model:

ΘI =

{
θ ∈ R2+Kx : Eθ0

[
ψ
y1|y1,y2
θ (Y 4

i0, Y
1
i−1, Xi)|Y 0

i , Xi

]
= 0, ∀(y1, y2) ∈ {0, 1}2

}
and construct confidence sets for θ0 following e.g Andrews and Shi (2013). Instead, the

sharp identified set may be computed following the approach of Dobronyi et al. (2021) if

the covariates Xi are discrete with finite support. Alternatively, a second approach which

we develop further here is to formulate sensible restrictions on covariates that secure point

identification in the spirit of Honoré and Kyriazidou (2000). Specifically, we consider the

case where a continuous scalar component Wi2 of Xi2 has unbounded positive support con-

ditional on Y 0
i , the other regressors, Ai and has a non-trivial effect β0W of known sign to the

econometrician. This is the content of Assumption 2 in which Zi = (R′
i,Wi1,Wi3,Wi4), and

Xit = (Wit, R
′
it) ∈ RKx for all t ∈ {1, 2, 3, 4}. Dobronyi et al. (2023) used a similar device

to develop an alternative distribution-free semiparametric estimator to that of Honoré and

Kyriazidou (2000) that can accommodate time effects in the baseline one lag model.

Assumption 2. (i) The covariate Wi2 is continuously distributed with unbounded support
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on R+ conditional on Y 0
i , Zi, Ai and (ii) β0W is known to be strictly negative.

Besides being a technical convenience, Assumption 2 may be reasonable in some situations,

e.g in the context of our empirical application, the econometrician may have a confident prior

that drug prices affect individual drug consumption negatively. We point out that nothing

in the discussion that follows hinges critically on βW < 0 and or Wi2 having support on the

positive reals. A set of perfectly symmetric arguments will deliver the same conclusions if

instead βW > 0 and Wi2 has unbounded support on R−.

Assumption 3. (i) θ0 = (γ01, γ02, β
′
0)

′ ∈ G1 × G2 × B = Θ, G1,G2,B compact. The condi-

tional densities of Ai and Zi verify:

(ii) lim
w2→∞

p(a|y0, z, w2) = q(a|y0, z), lim
w2→∞

p(z|y0, w2) = q(z|y0)

(iii) There exists positive integrable functions d0(a), d1(z), d2(z) such that p(a|y0, z, w2) ≤

d0(a) for all a ∈ R, d1(z) ≤ p(z|y0, w2) ≤ d2(z) for all z ∈ RKx−1

(iv) w2 7→ p(a|y0, z, w2), w2 7→ p(z|y0, w2) are continuous in w2.

Assumption 3 are standard regularity conditions for an application of the dominated con-

vergence theorem that once paired with Assumption 2 are sufficient to establish that θ0 is

identified at infinity. The outline of the argument is as follows. Under these assumptions, by

sendingWi2 to ∞, the valid moment function ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) of Proposition 4 reduces

to

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)Yi3

+
[
eX

′
i34β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X
′
i31βYi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

(6)

which occurs because limw2→∞ ew2βW = 0 and Yi2 = 0 with probability one conditional on the

regressors and the fixed effects. The key observation is that this “limiting” moment function

has a similar functional form to the valid moment functions of the AR(1) model with T = 3.

In turn, this implies monotonicity properties on certain regions of the covariate space that
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we can exploit to point identify θ0 in the spirit of Honoré and Weidner (2020). To this end,

let (x̄, x) ∈ R2, such that x̄ > x and define the sets

Xk,+ = {x ∈ R4Kx|x̄ ≥ xk,3 ≥ xk,4 > xk,1 ≥ x or x̄ ≥ xk,3 > xk,4 ≥ xk,1 ≥ x}

Xk,− = {x ∈ R4Kx|x ≤ xk,3 ≤ xk,4 < xk,1 ≤ x̄ or x ≤ xk,3 < xk,4 ≤ xk,1 ≤ x̄}

for all k ∈ {1, . . . , Kx}. In words, Xk,+ is the region of the covariate space in which values

of the k-th regressor in periods t ∈ {1, 3, 4} belong to [x, x̄] and verify xk,3 ≥ xk,4 ≥ xk,1

with at least one strict inequality. Instead, Xk,− is the region of the covariate space where

realizations of the k-th regressor obey the reverse ranking. With these notations in hands,

we have the following theorem,

Theorem 5. For T = 4, suppose that outcomes (Yi1, Yi2, Yi3, Yi4) are generated from model

(5) with p = 2, initial condition y0 ∈ Y2, common parameters θ0 = (γ′0, β
′
0) ∈ R2+Kx and that

Assumptions 2 and 3 hold. Further, for all s ∈ {−,+}Kx, let Xs =
Kx⋂
k=1

Xk,sk and suppose that

for all y0 ∈ Y2

lim
w2→∞

P
(
Y 0
i = y0, Xi ∈ Xs |Wi2 = w2

)
> 0

Let

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Xi) |Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
Then, θ0 is the unique solution to the system of equations

Ψ
0|0,0
s,y0 (θ) = 0, ∀s ∈ {−,+}Kx , ∀y0 ∈ Y2

Theorem 5 shows that point identification of θ0 is achievable in higher-order dynamic logit

models in short panels. The main cost for this guarantee is Assumption 2 which pre-

sumes knowledge of the data generating process beyond the baseline setup. Additionally,

there should be sufficient variation in the regressors Xit as Wi2 7→ ∞ to ensure that

limw2→∞ P
(
Y 0
i = y0, Xi ∈ Xs |Wi2 = w2

)
> 0 for all s ∈ {−,+}Kx . Our arguments are

easily generalizable to AR(p) models with lag order p ≥ 3. Under natural extensions of

Assumptions 2 and 3, the model parameters θ0 = (γ01, . . . , γ0p, β
′
0) are identified at infinity
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provided T ≥ 2 + p.

Remark 8 (Identification with time effects). Theorem 5 does not readily deals with time

effects but it is straightforward to adapt the argument for this case. Suppose for concreteness

that one covariate is a time trend. By further sending Wi3 to infinity, the limiting moment

function of equation (6) reduces to

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

For (Yi0, Yi−1) = (0, 0), this valid moment function only depends on β and arguments anal-

ogous to those in Theorem 5 will point identify β0. Varying the initial condition is then

sufficient to point identify γ0 given the monotonicity of the moment function in (γ1, γ2).

4.6 Average Marginal Effects in AR(p) logit models

In discrete choice settings, interest often centers on certain functionals of unobserved hetero-

geneity rather than on the value of the model parameters per se. One particular family of

such functionals that are of interest from a policy perspective are average marginal effects

(AMEs) which capture mean response to a counterfactual change in past outcomes. It turns

out that these key quantities are simply expectations of our transition functions. To see

this, consider first the baseline AR(1) model with discrete covariates Xit. We can define

the average transition probability from state l to state k in period t for a subpopulation of

individuals with covariate xt+1
1 = (x1, . . . , xt+1) and initial condition y0 as

Π
k|l
t (y0, x

t+1
1 ) = E

πk|lt (Xit+1, Ai)︸ ︷︷ ︸
≡πk|l

t (Xi,Ai)

|Yi0 = y0, X
t+1
i1 = xt+1

1

 =

∫
π
k|l
t (xt+1, a)p(a|y0, xt+1

1 )da

where p(a|y0, xt+1
1 ) denotes the conditional density of the fixed effect A given (y0, x

t+1
1 ). The

AME is defined as the following contrast of average transition probabilities:

AMEt(y0, x
t+1
1 ) = Π

1|1
t (y0, x

t+1
1 )− Π

1|0
t (y0, x

t+1
1 ) = Π

1|1
t (y0, x

t+1
1 )− (1− Π

0|0
t (y0, x

t+1
1 ))
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It is interpreted as the population average causal effect on Yit+1 of a change from 0 to 1 of Yit

given (y0, x
t+1
1 ). By Lemma 2 and the law of iterated expectations, we have that for T ≥ 2

and t ≥ 1:

Π
0|0
t (y0, x

t+1
1 ) = E

[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi) |Yi0 = y0, X

t+1
i1 = xt+1

1

]
Π

1|1
t (y0, x

t+1
1 ) = E

[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi) |Yi0 = y0, X

t+1
i1 = xt+1

1

]
which implies that AMEt(y0, x

t+1
1 ) is identified so long as θ0 is identified. A sufficient con-

dition for that is T ≥ 3 and Xi3 − Xi2 having support in a neighborhood of zero (Honoré

and Kyriazidou (2000)). Aguirregabiria and Carro (2021) were the first to highlight that

AMEs can be point identified in the AR(1) model. When the lag order p is greater than

one - which seems to be the case for persistent variables such as unemployment (e.g Magnac

(2000)) and welfare recipiency (e.g Chay et al. (1999)) - we can analogously define average

transition probabilities from states lp1 ∈ Yp to state k ∈ Y as:

Π
k|lp1
t (y0, xt+1

1 ) = E

πk|lp1t (Xit+1, Ai)︸ ︷︷ ︸
≡πk|l

t (Xi,Ai)

|Y 0
i = y0, X t+1

i1 = xt+1
1

 =

∫
π
k|lp1
t (xt+1, a)p(a|y0, xt+1

1 )da

This permits the consideration of more nuanced counterfactual parameters compared to

the AR(1). In the context of studies on long term unemployment, contrasts of the form

Π
k|lp1
t (y0, xt+1

1 ) − Π
k|vp1
t (y0, xt+1

1 ) may be especially relevant to measure more accurately the

relative effects of work histories spanning multiple periods. Again, these counterfactuals are

simply expectations of transition functions by Theorem 4 and will be identified whenever θ0

is identified (see Section 4.5 for examples of sufficient conditions).

Multiperiod analogs of average transition probabilities in AR(p) models

Π
ks1|l

p
1

t (y0, xt+s1 ) =

E
[
P (Yit+s = ks, . . . , Yit+1 = k1 |Yit = l1, . . . , Yit−(p−1) = lp, X

t+s
i1 = xt+s1 , Ai) |Y 0

i = y0, X t+s
i1 = xt+s1

]
may also be of interest to assess state-dependence. These quantities give the average prob-

ability of moving from states lp1 ∈ Yp to future states ks1 ∈ Ys, where s ≥ 1 and the average

is taken with respect to the distribution of Ai conditional on (y0, x
t+1
1 ). The special case
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k1 = k2 = . . . = ks delivers a discrete version of the survivor function employed in duration

analysis, i.e the average likelihood to survive s consecutive periods in the same state after

experiencing a given choice history. Proposition 3 shows that they are also identified when

θ0 is identified under certain conditions.

Proposition 3. Consider model (5) with T ≥ p+ 2, and initial condition y0 ∈ Yp. Suppose

that θ0 is identified and that for any t ∈ {p, . . . , T − 2}, s ∈ {1, . . . , T − 1− t} and y, ỹ ∈ Yp,

γ′0y + x′tβ0 ̸= γ′0ỹ + x′t+sβ0 . Then, for t ∈ {p, . . . , T − 2}, s ∈ {1, . . . , T − 1 − t}, and any

lp1 ∈ Yp, ks1 ∈ Ys, the quantity Π
ks1|l

p
1

t (y0, xt+s1 ) is identified.

The source of this result is the fact that the integrand of Π
ks1|l

p
1

t (y0, xt+s1 ) is a product of

transition probabilities. This entails that under appropriate conditions on the regressors

and common parameters, we can turn this integrand into a unique linear combination of

transition probabilities by means of a partial fraction decomposition. It is then a matter of

taking expectations and invoking the fact that average transition probabilities are identified

from our transition functions.

Example 1 (Survivor function for an AR(2)). To illustrate Proposition 3, and in the spirit

of our upcoming empirical application, suppose that Yit is an indicator for drug consumption

at time t obeying an AR(2) logit process. Fix y0 ∈ Y2 and assume T = 5. One might be

interested in

Π
0,0|1,1
3 (y0, x) = E

[
P (Yi5 = 0, Yi4 = 0 |Yi3 = 1, Yi2 = 1, Xi = x,Ai) |Y 0

i = y0, Xi = x
]

= E
[
π
0|0,1
4 (Ai, x)π

0|1,1
3 (Ai, x) |Y 0

i = y0, Xi = x
]

which gives the average propensity of individuals with characteristics (y0, x) who consumed

drugs in t = 2, 3 to stay drug-free over the next two time periods. A simple calculation using

for instance the identities of Appendix Lemma 8 gives

π
0|0,1
4 (Ai, x)π

0|1,1
3 (Ai, x) =

1

1 + eγ02+x
′
5β0+Ai

1

1 + eγ01+γ02+x
′
4β0+Ai

=
1

1− eγ01+x
′
45β0

π
0|0,1
4 (Ai, x)−

eγ01+x
′
45β0

1− eγ01+x
′
45β0

π
0|1,1
3 (Ai, x)

and since Theorem 4 implies E
[
ϕ
0|0,1
θ0

(Y 5
i1, x) |Y 0

i = y0, Y 2
i1, Xi = x,Ai

]
= π

0|0,1
4 (Ai, x) and
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E
[
ϕ
0|1,1
θ0

(Y 4
i0, x) |Y 0

i = y0, Yi1, Xi = x,Ai

]
= π

0|0,1
3 (Ai, x), we obtain

Π
0,0|1,1
3 (y0, x) = E

[
1

1− eγ01+x
′
45β0

ϕ
0|0,1
θ0

(Y 5
i1, x)−

eγ01+x
′
45β0

1− eγ01+x
′
45β0

ϕ
0|1,1
θ0

(Y 4
i0, x) |Y 0

i = y0, Xi = x

]

5 Multi-dimensional fixed effects models

We now turn our attention to multi-dimensional fixed effects models. We show that the

general blueprint developed in the scalar case to derive valid moment functions carries over

to VAR(1) and MAR(1) models. We make no attempt at showing that our approach is

exhaustive in those cases and do not claim that it is. We leave these important questions

for future work. Readers uninterested in the details of the multivariate extensions can skip

directly to Section 6 where we discuss the empirical application.

5.1 Moment restrictions for the VAR(1) logit model

We begin with the analysis of VAR(1) logit models, variants of which have been successfully

used to study the relationship between sickness and unemployment (Narendranthan et al.

(1985)), the progression from softer drug use to harder drug use among teenagers (Deza

(2015)), transitivity in networks (Graham (2013), Graham (2016)) and more recently the

employment of couples (Honoré et al. (2022)). For a given M ≥ 2, the model reads:

Ym,it = 1


M∑
j=1

γ0mjYj,it−1 +X ′
m,itβ0m + Am,i − ϵm,it ≥ 0

 , m = 1, . . . ,M, t = 1, . . . , T

(7)

We let Yit = (Y1,it, . . . , YM,it)
′ denote the outcome vector in period t with support Y = {0, 1}M

of cardinality 2M . We let Xit = (X ′
1,it, . . . , X

′
M,it)

′ ∈ RK1 × . . . × RKM denote the vector of

exogenous covariates in period t and Ai = (A1,i, . . . , AM,i)
′ ∈ RM . The initial condition is

now given by Yi0 = (Y1,i0, . . . , YM,i0)
′ ∈ Y and the model transition probabilities are given

by:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, Xi, Ai) =

M∏
m=1

ekm(
∑M

j=1 γ0mj lj+X
′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mj lj+X′
m,it+1β0m+Am,i
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for all (k, l) ∈ Y × Y .

Building on Honoré and Kyriazidou (2000), Honoré and Kyriazidou (2019) use a condi-

tional likelihood approach to prove the identification θ0 = (γ011, γ012, γ021, γ022, β01, β02) for

the bivariate specification when T = 3 and the regressors do not vary over the last two pe-

riods. As in scalar models, we show hereinafter that this strong restriction which can yield

undesirable rates of convergence is unnecessary to obtain valid moment conditions.

Step 1) in the VAR(1) logit model has a nuance relative to its scalar counterpart in

that the only transition functions that appear to exist are those associated to π
k|k
t (Ai, Xi),

for k ∈ Y , i.e the probabilities of staying in the same state. We can use the same heuristic

as in the baseline AR(1) model to derive their expressions, especially in the bivariate case.

Once all four transition functions are obtained for the case M = 2, it becomes clear that the

general functional form is as per Lemma 4. It is then a matter of brute force calculation to

verify that this is indeed correct.

Lemma 4. In model (7) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e

∑M
m=1(Ym,it+1−km)(

∑M
j=1 γmj(Yj,it−1−kj)−∆X′

m,it+1βm)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi) =

M∏
m=1

ekm(
∑M

j=1 γ0mjkj+X
′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mjkj+X′
m,it+1β0m+Am,i

Next, we can appeal to the second partial fraction decomposition formula in Appendix Lemma

9 to guide the construction of another set of transition functions when T ≥ 3. These identities

may be regarded as a generalization of Kitazawa (2022)’s hyperbolic transformations to the

multivariate case. As is clear from Lemma 5, the resulting transition functions have a special

structure that generalizes those found in the AR(1) model.

Lemma 5. In model (7) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for all
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m ∈ {1, . . . ,M} and (k, l) ∈ Y2

µm,s(θ) =
M∑
j=1

γmjYj,is−1 +X ′
m,isβm

κ
k|k
m,t(θ) =

M∑
j=1

γmjkj +X ′
m,it+1βm

ω
k|k
t,s,l(θ) = 1− e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]

and define the moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)

Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Beyond T = 4, more transition functions are available and can be derived sequentially from

those of Lemma 5. See Corollary 5.1 for their expressions.

Corollary 5.1. In model (7) with T ≥ 4, for any t and ordered collection of indices sJ1 ,

J ≥ 2, satisfying T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let for all k ∈ Y

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}

+
∑

l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

with weights ω
k|k
t,sJ ,l

(θ) defined as in Lemma 5. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Step 2). One can obtain a family of valid moment functions by adequately repurposing

the statement of Proposition 2 to the VAR(1) case, i.e by updating the expressions of ϕ
k|k
θ (.)

and ζ
k|k
θ according to Lemma 4 and Corollary 5.1. To conserve on space and avoid repetition,

we leave this simple exercise to the reader.

Remark 9 (Network Extension). Similarly to Remarks 7, we emphasize that the tools de-
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veloped here can be modified to handle other interesting variants featuring more complex

interdependencies across the different layers of the model indexed by m = 1, . . . ,M . To

illustrate the wider applicability of our two-step method, we show in Appendix N how one

can derive moment restrictions in the dynamic network formation model of Graham (2013)

and extensions thereof incorporating exogenous covariates.

5.2 Moment restrictions for the dynamic multinomial logit model

Last, we cover dynamic multinomial logit models which have been utilized to measure state-

dependence in a range of economic contexts including: employment history in the French

labor market (Magnac (2000)), the impact of international trade on the transition matrix of

employment across sectors (Egger et al. (2003)) and consumer product choice (Dubé et al.

(2010)) amongst others.

We focus on the the baseline MAR(1) logit model with fixed effects.

The model assumes a fixed number of alternatives C +1 with C ≥ 1 and is characterized

by the following transition probabilities:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l, Xi, Ai) =

eγkl+X
′
ikt+1βk+Aik

C∑
c=0

eγcl+X
′
ict+1βj+Aic

, t = 1, . . . , T (8)

with (k, l) ∈ Y = {0, 1, . . . , C}. Here, Yit ∈ Y indicates the choice of individual i in period

t, Xijt denotes a vector of individual-alternative specific exogenous covariates and Aij ∈ R

is the fixed effect attached to alternative j for individual i. The initial condition is Yi0 ∈ Y

and in keeping with the fixed effect assumption, its conditional distribution given unob-

served heterogeneity and the regressors,
(
P (Yi0 = k|Xi, Ai)

)C
k=1

, is left fully unrestricted.

Following Magnac (2000), we normalize the transition parameters and fixed effect of the

reference alternative “0” to zero 9. That is γj0 = γ0j = 0, A0,j = 0 for all j ∈ Y leaving

θ =
(
(γkl)k,l≥1, (βl)l≥0

)
as the unknown model parameters.

This specification can be motivated by assuming that agents rank options according to

random latent utility indices with disturbances independent over time and across alterna-

9The transition parameters of the reference state cannot be identified so a normalization constraint must
be imposed. Setting Ai0 = 0 is also without loss of generality since we can always redefine the fixed effect as
A∗

ik = Aik −Ai0.
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tives. In this context, equation (8) is obtained if the best alternative is selected and the error

terms are Type 1 extreme value distributed conditional on Yi0, Ai, Xi. Magnac (2000) studies

the “pure” case without covariates and shows that an extension of the conditional likelihood

approach proposed by Chamberlain (1985) can be used to identify and estimate the state-

dependence parameters. Honoré and Kyriazidou (2000) show that this argument carries over

to the case with exogenous explanatory variables if one matches the regressors across specific

time periods. Here, we offer an alternative estimation strategy that circumvents the need for

matching.

Step 1). Similarly to the VAR(1) model the MAR(1) appears to admit transition func-

tions only for the probabilities of staying in the same state, namely π
k|k
t (Ai, Xi) for k ∈ Y .

This feature appears to be a common trait of multidimensional fixed effects specifications.

To facilitate the derivation of the relevant transition functions, we follow our usual heuristic

of looking for ϕ
k|k
θ (.), k ∈ Y satisfying:

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi) | Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Upon obtaining their exact expressions for the simplest case with C = 2, it is easy to

conjecture and verify by direct calculations that the general expressions of the C+1 transition

functions of the MAR(1) model are as displayed in Lemma 6.

Lemma 6. In model (8) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Y t+1

it−1, Xi) = 1{Yit = k}e
∑

c∈Y\{k} 1{Yit+1=c}(
∑

j∈Y (γcj−γkj)1(Yit−1=j)+γkk−γck+∆X′
ikt+1βk−∆X′

ict+1βc)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Unsurprisingly, given the similarities shared between the MAR(1) and all other specifications

discussed in the paper, so long as T ≥ 3, one can again derive transition functions other than

ϕ
k|k
θ (Y t+1

it−1, Xi) also associated to π
k|k
t (Ai, Xi) for k ∈ Y in periods t ∈ {1, . . . , T − 1}. The

simple logistic identities of Appendix Lemma 8 imply that these transition functions, that we
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keep denoting ζ
k|k
θ (.) have a similar form to those of the VAR(1) model as shown in Lemma

7.

Lemma 7. In model (8) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for all

(c, k) ∈ Y2

µc,s(θ) =
C∑
j=1

γcj1(Yis−1 = j) +X ′
icsβc −X ′

i0sβ0

κ
k|k
c,t (θ) = γck +X ′

ict+1βc −X ′
i0t+1β0

ω
k|k
t,s,c(θ) = 1− e(κ

k|k
c,t (θ)−µc,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

and define the moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)

Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Additionally, if the econometrician has access to a dataset with more than four observations

per sampling unit - counting the initial condition - then, more transition functions associated

to the same transition probabilities are available per Corollary 7.1.

Corollary 7.1. In model (8) with T ≥ 4, for any t and ordered collection of indices sJ1 ,

J ≥ 2, satisfying T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let for all k ∈ Y

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}

+
∑

l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isj−1−1, Xi)

with weigts ω
k|k
t,sJ ,l

(θ) defined as in Lemma 7. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

This completes Step 1) for the MAR(1) logit model. For Step 2), we recommend a

family of valid moment functions mirroring those of Proposition 2 for the AR(1) case to
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ensure the linear independence of its elements.

6 Empirical Illustration

In this last section, we illustrate the usefulness of our methodology by revisiting the analysis

of Deza (2015) on the dynamics of drug consumption amongst young adults in the United

States.10

To provide context, multiple studies have documented that young individuals who ex-

periment with soft drugs have a tendency to continue using them and are at a higher risk

of transitioning to hard drugs. Such correlations are certainly concerning. However, the

empirical evidence of genuine causal links, in particular from softer drugs to harder drugs,

remains limited with Deza (2015) standing as a notable exception. Fundamentally, these

empirical regularities may be attributed to a causal effect (i.e. state dependence within and

between drugs) or alternatively to latent traits that make individuals more prone to using

illicit substances in general. Our primary concern is to untangle these two explanations to

inform the design of policies aiming to mitigate drug addiction 11. For example, if marijuana

consumption indeed serves as a gateway to later cocaine use, early educational interventions

cautioning against casual marijuana usage could potentially have enduring effects on the

population of heavy drug users.

To investigate these issues, we employ the restricted version of the National Longitudinal

Survey of Youth 1997 (NLSY97). This is a panel dataset of 8984 individuals surveyed on a

diverse range of subjects, including drug-related matters from 1997 to 2019. We concentrate

on a subsample of four waves, spanning from 2001 to 2004. This subsample provides insight

into the behavior of young adults between the age of 16 and 20 in 2001 to 19 and 24 in 2004.

We shall examine the statistical association between three binary outcome variables, namely

the consumption of alcohol, marijuana and hard drugs, derived from respondents answers’

during annual interviews. Upon retaining those providing answers in all four waves as well

10This research was conducted with restricted access to Bureau of Labor Statistics (BLS) data. The views
expressed here are those of the author and do not reflect the views of the BLS.

11See Heckman (1981) for insights on the implications of state dependence for the design of labor market
policies.
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as a valid state of residence, our cross section ultimately consists of N = 6317 individuals 12.

Following Deza (2015), we then consider the trivariate VAR(1) logit model

Ym,it = 1


3∑
j=1

γ0mjYj,it−1 + β0mageit + ρ0mTEDSm,it + ν011{ageit ≥ 21}1{m = 1}+ Am,i − ϵm,it ≥ 0


m ∈ {1, 2, 3} (1=“alcohol”, 2=“marijuana”, 3=“hard drugs”), t = 1, 2, 3 where t = 0 corre-

sponds to the year 2001. The state-dependence coefficients γ0mm (within) and γ0mj,m ̸= j

(between) are the principal coefficients of interest in the 16-dimensional vector of common

parameters θ0. We are most particularly concerned about the sign and the statistical

significance of γ032, i.e the so called “stepping-stone” effect of marijuana on hard drugs.

The covariate ageit denotes the age of respondent i at time t. The regressors TEDSm,it

measure state-level deviations from national trends in treatment admissions for substance

abuse caused by drug m in year t in the state of residence of i13. They are computed as the

ratio of the share of admissions to treatment centers due to drug m in the state of i in year t

against the country wide analog in year t. Intuitively, this may be interpreted as a measure

of exposure to substance m for each respondent in our sample.

Deza (2015) parameterizes both the latent permanent heterogeneity (Am,i)
3
m=1 and

the initial condition Y 0
i to estimate the model by maximum likelihood. We leave these

components unrestricted and exploit the valid moment functions presented in Section 5.1.

We specifically use six of the eight valid moment functions available: ψ
k|k
θ (Y 3

i1, Y
1
i0, Xi) for

k ∈ {(0, 0, 0), (0, 1, 0), (1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)}. The other two corresponding to

states k ∈ {(0, 0, 1), (0, 1, 1)} are null for over 99.5% of our sample and were dropped to

mitigate noise in estimation. Next, we (arbitrarily) select a constant, the initial condition

Y 0
i , ageit and the covariates TEDSm,it in all periods t = 1, 2, 3 as instruments to form the

96× 1 moment vector

12We adapt the sample selection procedure described in Deza (2015) for the period 2001-2004.
13The variables TEDSm,it are constructed from the Treatment Episode Data Set-Admissions which records

admissions to substance abuse treatment facilities in the United States.
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mθ(Yi, Y
0
i , Xi) =



ψ
(0,0,0)|(0,0,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(0,1,0)|(0,1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1,1)|(1,1,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1,0)|(1,1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0,1)|(1,0,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0,0)|(1,0,0)
θ (Y 3

i1, Y
1
i0, Xi)


⊗



1

Y 0′
i

age3
′
i1

TEDS3′
1,i1

TEDS3′
2,i1

TEDS3′
3,i1


With mθ(Yi, Y

0
i , Xi) in hand, we then consider the iterated GMM estimator of Hansen et al.

(1996). Starting from an initial candidate θ̂0
14, it can be described as

θ̂ = lim
s→∞

θ̂s

θ̂s = argmin
θ

mN(θ)
′WN(θ̂s−1)

−1mN(θ)

where mN(θ) =
1
N

∑N
i=1mθ(Yi, Y

0
i , Xi) and WN(θ) =

1
N

∑N
i=1mθ(Yi, Y

0
i , Xi)mθ(Yi, Y

0
i , Xi)

′.

Under some regularity conditions (Hansen and Lee (2021)), this estimator is well defined and

asymptotically normally distributed with

√
N(θ̂ − θ0)

d−→ N (0, (M ′
0W

−1
0 M0)

−1)

where M0 = E
[
∂mθ0

(Yi,Y
0
i ,Xi)

∂θ

]
and W0 = E

[
mθ0(Yi, Y

0
i , Xi)mθ0(Yi, Y

0
i , Xi)

′]. Our motivation

for focusing on this specific estimator originates mainly from Hansen and Lee (2021) who

advocate its use for two practical reasons. First, for a given set of moments, it eliminates the

arbitrariness in the choice of the initial weight matrix of 2-step GMM estimators (see also

Imbens (2002)). Second, because the iteration sequence is a contraction, each iteration is

approximately variance reducing in the sense that: V ar(θ̂s) ≈ c2V ar(θ̂s−1) for some constant

c < 1 15. Empirically, we also found in Monte Carlo simulations that the iterated GMM

estimator performs relatively well for this type of specification (see Appendix D).

Table 1 presents the iterated GMM estimates for the trivariate VAR(1) logit model in

14In practice, we used the GMM estimator putting equal weights on each moment as our starting candidate.
15Note that the limiting variance of the iterated GMM estimator and a 2-step GMM estimator will be

identical.
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columns (I), (II), (III). For comparison, columns (IV), (V), (VI) report a random effect (RE)

estimator akin to Deza (2015) 16 while columns (VII), (VIII), (IV) display the “naive” logit

maximum likelihood estimator (MLE) neglecting the presence of fixed effects.

The first observation is that, in line with conventional wisdom, GMM estimates for the

state-dependence parameters within drug, γ11, γ22, γ33, are all positive. As is apparent from

columns (I)-(III), they are statistically significant for alcohol and marijuana but surprisingly

not for hard drugs. In other words, there is no statistical evidence of a direct effect from

past consumption of hard drug to future usage of hard drugs once we account for unobserved

heterogeneity and the effects of other substances, at least in our four-wave sample17. Notice

that the magnitude of the estimates for γ11, γ22, γ33 sharply contrast with the other two

estimators. The naive MLE largely overestimates the amount of within state-dependence,

yielding coefficients that are comparatively four to eight times larger. Intuitively, this can be

rationalized by the fact that this estimator misinterprets any serial correlation produced by

Ai as evidence of state dependence. The RE estimator borrowed from Deza (2015) (see also

Card and Hyslop (2005), Chay and Hyslop (1998)) acts as an intermediate estimator between

the other two as can be seen in columns (IV)-(VI). This behavior is expected to the extent

that the additional parametric structure of this methodology will account to some degree for

the presence of unobserved heterogeneity. We note that the role of within state dependence

in the dynamics of drug consumption is nevertheless overstated by this approach.

Second and importantly, we observe in column (III) a positive and statistically significant

effect of marijuana on hard drugs. This supports the view that marijuana usage can be a

gateway to the consumption of harder drugs and accords with the key findings of Deza (2015).

From a practical standpoint, this result corroborates that there may be scope for policies on

marijuana usage to indirectly curb the consumption of more lethal substances by teenagers

and young adults. The efficacy of such policies in the short and long run are important

questions that will intuitively depend on the distribution of heterogeneity in the population.

16We borrow the specification presented in Deza (2015). The heterogeneity distribution is discrete with 3
mass points and is independent of the regressors. The initial condition relates to the covariates through a
logistic regression.

17The transition parameters for hard drugs are expected to be noisier given that a smaller fraction of
individuals consume these more lethal substances: approximately 15% of the respondents indicate having
consumed hard drugs at least once from 2001-2004. This contrasts with 86% for alcohol and 40% for mari-
juana.
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We do not explore those questions here but further research in this direction would be of

interest 18. The other two estimators also agree on a positive influence of marijuana on the

consumption of harder drugs, albeit it is statistically insignificant in the RE case.

Table 1: Parameter estimates of the trivariate VAR(1) logit

Iterated GMM Random Effects Naive MLE

A M HD A M HD A M HD
(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IV)

γm1 0.30 -0.04 -0.02 1.41 -0.36 -0.2 2.44 0.87 0.77
(0.12) (0.21) (0.32) (0.16) (0.22) (0.63) (0.06) (0.14) (0.37)

γm2 -0.07 0.70 0.69 -0.52 1.48 0.16 0.72 2.55 1.43
(0.16) (0.14) (0.22) (0.12) (0.13) (0.25) (0.07) (0.07) (0.16)

γm3 -0.20 0.26 0.32 -0.66 -0.17 1.59 0.22 0.74 2.12
(0.27) (0.22) (0.21) (0.19) (0.13) (0.13) (0.12) (0.09) (0.12)

age 0.06 -0.18 0.08 0.04 -0.14 -0.05 -0.08 -0.13 -0.21
(0.05) (0.06) (0.09) (0.6) (0.27) (0.32) (0.03) (0.02) (0.03)

age ≥ 21 0.04 0.46 0.54
(0.11) (0.2) (0.07)

TEDS1 -0.09 0.96 0.67
(0.09) (0.77) (0.50)

TEDS2 -0.18 0.02 -0.13
(0.12) (0.48) (0.30)

TEDS3 0.42 0.15 -0.10
(0.32) (0.44) (0.40)

N 6317 6317 6317
Periods 2001-2004 2001-2004 2001-2004
# Iterations 12

Notes: The convergence criterion of our iterated GMM procedure is
∥∥∥θ̂s+1 − θ̂s

∥∥∥ < 10−4. Estimated standard

errors are reported in parenthesis.

Otherwise, it is noteworthy that the between state dependence estimates can vary quite signif-

icantly across specifications. Again, the naive MLE likely misinterprets spurious correlation

18A natural idea to gauge the effectiveness of policy interventions would be to compute average marginal
effects. However, as mentioned in Section 5.1, we were unable to find transition functions for the transition
probabilities where the state switches in VAR(1) models. This leads us to believe that only the average
transition probabilities where the state remains unchanged are identified. In turn, this would imply that
average marginal effects are generally partially identified in VAR(1) models. In this case, it is possible that
ideas analogous to those in Dobronyi et al. (2021) and Davezies et al. (2021) could be used to characterize
and compute the identified set of average marginal effects; albeit some difficulties might arise due to the fact
that the fixed effects are now multidimensional. Computing outer bounds as in Pakel and Weidner (2023)
could be another plausible option.
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from the Ai as state dependence which results in positive and inflated cross effects. Column

(IV) and (I) show disagreements of the RE and GMM estimates regarding the strength of

the impact of marijuana and hard drugs on alcohol. Overall, this comparative exercise has

showed that accounting for unobserved heterogeneity as flexibly as possible can be essential

to obtain an accurate picture of the patterns of state dependence in practice.

7 Conclusion

Dynamic discrete choice models are widely used to study the determinants of repeated deci-

sions made by individuals or firms over time. In this paper, we have introduced a procedure to

estimate a family of such models with logistic (or Type I extreme value) errors and potentially

many lags while remaining agnostic about the nature of unobserved individual heterogeneity.

This type of approach may be attractive when the risk of misspecifying the initial condition

and the unit-specific effects are important. We also provided general expressions for average

marginal effects in the binary response case which are often the counterfactuals of interest in

practice.

The list of discrete choice models covered in this paper is of course not exhaustive and

it would be interesting to know if our two-step approach could be deployed in other settings

with “logit” noise. In ongoing work, we have found that this is one avenue to approach

estimation of dynamic ordered logit models, potentially of arbitrary lag order.
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Honoré, B. E., Muris, C., and Weidner, M. (2021). Dynamic ordered panel logit models.

arXiv preprint arXiv:2107.03253.
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Appendix

A Partial Fraction Decomposition

Lemma 8. For any reals u1, u2, . . . , uK, v1, v2, . . . , vK and a1, a2, . . . , aK, K ≥ 1 we have

1

1 +
K∑
k=1

evk+ak
+

K∑
k=1

(1− euk−vk)
evk+ak(

1 +
K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

) =
1

1 +
K∑
k=1

euk+ak

and

evj+aj

1 +
K∑
k=1

evk+ak
+ (1− e−uj+vj)

euj+aj(
1 +

K∑
k=1

evk+ak

)(
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K∑
k=1

euk+ak

)+

K∑
k=1
k ̸=j

(1− e(uk−uj)−(vk−vj))
evk+ak+uj+aj(

1 +
K∑
k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

) =
euj+aj

1 +
K∑
k=1

euk+ak

Proof.
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1 +
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k=1 e
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+
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and

evj+aj
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k=1 e
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Lemma 9. Fix M ≥ 2, let Y = {0, 1}M . Then, for any k ∈ Y and any reals u1, u2, . . . , uM ,

v1, v2, . . . , vM and a1, a2, . . . , aM , we have

M∏
m=1

ekm(vm+am)

1 + evm+am
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
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Proof. Let

LHS =
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] M∏
m=1

ekm(um+am)

1 + eum+am

elm(vm+am)

1 + evm+am

2



and let Num denote the numerator of LHS. We have:

Num = Num1 +Num2

Num1 =
M∏
m=1

ekm(vm+am)(1 + eum+am)
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It follows that Num =
∏M

m=1 e
km(um+am)(1 + evm+am) and consequently

LHS =

∏M
m=1 e

km(um+am)(1 + evm+am)∏M
m=1(1 + eum+am)(1 + evm+am)

=
M∏
m=1

ekm(um+am)
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B Connection to Kitazawa and Honoré-Weidner

Recall from Proposition 2 that when T ≥ 3, our simplest moment conditions for t, s such

that T − 1 ≥ t > s ≥ 1 write:

ψ
0|0
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)− ζ

0|0
θ (Y t+1

it−1, Y
s
is−1, Xi)

= ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)− (1− Yis)− ω

0|0
t,s (θ)Yisϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

ψ
1|1
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)− ζ

1|1
θ (Y t+1

it−1, Y
s
is−1, Xi)

= ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)− Yis − ω

1|1
t,s (θ)(1− Yis)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

where we know from Lemma 3 that
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Now, note that:
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= −2ψ

0|0
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

(2− ω
1|1
t,t−1(θ))ℏΥit = (2− ω

1|1
t,t−1(θ))(Υit − Yit−1)− ω

1|1
t,t−1(θ) (Υit + Yit−1 − 2ΥitYit−1)

= 2
[
Υit − Yit−1 − ω

1|1
t,t−1(θ)Υit (1− Yit−1)

]
= 2

[
ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)− Yit−1 − ω

1|1
t,t−1(θ)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi) (1− Yit−1)

]
= 2ψ

1|1
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

To establish the connection to the work of Honoré and Weidner (2020), it is useful to re-write

the moment functions slightly differently. By re-arranging terms, one obtains the following

for T = 3

ψ
0|0
θ (Y 3

1 , Y
1
i0, Xi) = (1− Yi1)ϕ

0|0
θ (Y 3

i1, Xi) + e(Xi3−Xi1)
′β−γYi0Yi1ϕ

0|0
θ (Y 3

i1, Xi)− (1− Yi1)

= e(Xi2−Xi3)
′β(1− Yi1)(1− Yi2)Yi3 + (1− Yi1)(1− Yi2)(1− Yi3)

+ e(Xi2−Xi1)
′β+γ(1−Yi0)Yi1(1− Yi2)Yi3

+ e(Xi3−Xi1)
′β−γYi0Yi1(1− Yi2)(1− Yi3)

− (1− Yi1)

= (e(Xi2−Xi3)
′β − 1)(1− Yi1)(1− Yi2)Yi3

+ e(Xi2−Xi1)
′β+γ(1−Yi0)Yi1(1− Yi2)Yi3

+ e(Xi3−Xi1)
′β−γYi0Yi1(1− Yi2)(1− Yi3)

− (1− Yi1)Yi2

(9)

where the last line uses the fact that: (1− Yi1) = (1− Yi1)Yi2 + (1− Yi1)(1− Yi2)Yi3 + (1−

Yi1)(1− Yi2)(1− Yi3) to make some cancellations. For the initial condition, Yi0 = 0, equation

(9) corresponds to their moment function mb
0 which they express in an extensive form. For
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Yi0 = 1, we get instead mb
1. Similarly,

ψ
1|1
θ (Y 3

i1, Y
1
i0, Xi) = Yi1ϕ

1|1
θ (Y 3

i1, Xi) + e−γ(1−Yi0)−(Xi3−Xi1)
′β)(1− Yi1)ϕ

1|1
θ (Y 3

i1, Xi)− Yi1

= e(Xi3−Xi2)
′βYi1Yi2(1− Yi3) + Yi1Yi2Yi3

+ e(Xi1−Xi2)
′β+γYi0(1− Yi1)Yi2(1− Yi3)

+ e(Xi1−Xi3)
′β−γ(1−Yi0)(1− Yi1)Yi2Yi3

− Yi1

= (e(Xi3−Xi2)
′β − 1)Yi1Yi2(1− Yi3)

+ e(Xi1−Xi2)
′β+γYi0(1− Yi1)Yi2(1− Yi3)

+ e(Xi1−Xi3)
′β−γ(1−Yi0)(1− Yi1)Yi2Yi3

− Yi1(1− Yi2)

(10)

where the last line uses the fact that: Yi1 = Yi1(1− Yi2) + Yi1Yi2Yi3 + Yi1Yi2(1− Yi3). For the

initial condition Yi0 = 0, equation (10) gives their moment function ma
0 and for Yi0 = 1, we

get ma
1. Our moments are thus identical, at least for the case T = 3.

C The remaining steps for the AR(p) model with p > 1

As indicated in Section 4.4.2 , Step 1) (b) is now analogous to the AR(1) case since the

transition probabilities keep an identical structure. As soon as T ≥ p + 2, we can construct

transition functions other than ϕ
y1|yp1
θ (Yit+1, Yit, Y

t−1
it−(2p−1), Xi) also associated to π

y1|yp1
t (Ai, Xi),

for yp1 ∈ Yp in periods t ∈ {p+1, . . . , T − 1},. These new transition functions that we denote

ζ
y1|yp1
θ (.) take the form of a weighted combination of past outcome 1(Yis = y1), s ∈ {1, . . . , t−

p} and the interaction of 1(Yis ̸= y1) with any transition function whose conditioning set

encompasses Yis for it to map to π
y1|yp1
t (Ai, Xi). The simplest examples which are also the

only ones available when T = p+ 2, are given in Lemma 10.

Lemma 10. In model (5) with T ≥ p + 2, for all t ∈ {p + 1, . . . , T − 1}, s ∈ {1, . . . , t− p}
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and yp1 ∈ Yp, let

µs(θ) =

p∑
r=1

γ0rYis−r +X ′
isβ

κ
y1|yp1
t (θ) =

p∑
r=1

γ0ryr +X ′
it+1β

ω
y1|yp1
t,s (θ) =

[
1− e(κ

y1|y
p
1

t (θ)−µs(θ))
]1−y1 [

1− e−(κ
y1|y

p
1

t (θ)−µs(θ))
]y1

and define the moment functions:

ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi) = 1{Yis = y1}+ ω

y1|yp1
t,s (θ)1{Yis ̸= y1}ϕ

y1|yp1
θ (Yit+1, Yit, Y

t−1
it−(2p−1), Xi)

Then,

E
[
ζ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

Unsurprisingly, as in the AR(1) case, it becomes possible to construct iteratively more tran-

sition functions from those given in Lemma 10 when at least T = p+ 3 periods are observed

post initial condition. They are given in Corollary 10.1 below.

Corollary 10.1. In model (5) with T ≥ p + 3, for all t ∈ {p + 1, . . . , T − 1} and collection

of ordered indices sJ1 with J ≥ 2 satisfying t− p ≥ s1 > . . . > sJ ≥ 1, and for all yp1 ∈ Yp, let

ζ
0|0,yp2
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = (1− YisJ ) + ω

0|0,yp2
t,sJ

(θ)YisJ ζ
0|0,yp2
θ (Y t+1

it−1, Y
s1
is1−p, . . . , Y

sJ−1

isJ−1−p, Xi)

ζ
1|1,yp2
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = Yisj + ω

1|1,yp2
t,sJ

(θ)(1− YisJ )ζ
1|1,yp2
θ (Y t+1

it−1, Y
s1
is1−p, . . . , Y

sJ−1

isJ−1−p, Xi)

with weights ω
y1|yp1
t,sJ

(θ) defined as in Lemma 10. Then,

E
[
ζ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

Step 2). Provided that T ≥ p+2, it is clear that the difference between any two distinct

transition functions associated to the same transition probability in t ∈ {p+1, . . . , T−1} will

yield a valid moment function. Proposition 4 hereinbelow presents one set of valid moment

functions that generalize those obtained previously for the one lag case.

Proposition 4. In model (5)
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if T ≥ p+ 2, for all t ∈ {p+ 1, . . . , T − 1}, s ∈ {1, . . . , t− p} and yp1 ∈ Yp, let

ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi) = ϕ

y1|yp1
θ (Y t+1

it−(2p−1), Xi)− ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi),

if T ≥ p + 3, for all t ∈ {p + 1, . . . , T − 1} and collection of ordered indices sJ1 with J ≥ 2

satisfying t− p ≥ s1 > . . . > sJ ≥ 1, and for all yp1 ∈ Yp, let

ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = ϕ

y1|yp1
θ (Y t+1

it−(2p−1), Xi)− ζ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)

Then,

E
[
ψ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= 0

E
[
ψ
y1|yp1
θ0

(Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= 0

This family of moment functions features precisely 2T − (T + 1 − p)2p distinct elements

for any initial condition. Indeed, fix Y 0
i and a p-vector yp1 ∈ {0, 1}p. Then, for a given time

period t ∈ {p+1, . . . , T − 1}, there are
(
t−p
1

)
moments of the form ψ

y1|yp1
θ (Y t+1

it−(2p−1), Y
s
is−p, Xi)

corresponding to choices of s ∈ {1, . . . , t − p}. Moreover, by choosing any feasible sequence

sJ1 , J ≥ 2, verifying t − p ≥ s1 > . . . > sJ ≥ 1 we produce another
∑t−p

l=2

(
t−p
l

)
moment

functions of the form ψ
y1|yp1
θ (Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi). In total, for period t, we count

:

t−p∑
l=1

(
t− p

l

)
= 2t−p − 1

valid moments. Now, summing over all possible values for t ∈ {p + 1, . . . , T − 1} and

multiplying by the number of distinct values for yp1, namely 2p, we get:

2p
T−1∑
t=p+1

t−p∑
l=1

(
t− p

l

)
= 2p

T−1∑
t=p+1

(2t−p − 1) = 2p

(
2
1− 2T−p−1

1− 2
− (T − p− 1)

)
= 2T − (T + 1− p)2p

Numerical experimentation for various values of T in the AR(1) and AR(2) cases suggest

that the moment functions of Proposition 4 are effectively linearly independent. Therefore,

Theorem 3 implies that they constitute a complete family of moment functions for AR(p)

models. From a practical standpoint, this shows that functional differencing at least in panel

data logit models can be broken down into a series of equivalent simpler subproblems period
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by period that find all moment equality restrictions. Our procedure can be advantageous

in sophisticated models with a few lags where an analysis of the full likelihood, a high

dimensional object, can prove difficult.

D Simulation Experiments

In this section, we report the results of a small set of simulations designed to assess the finite

sample performance of GMM estimators based on our moment conditions.

D.1 Monte Carlo for an AR(3) logit model

For our first example, we consider an AR(3) logit model with T = 5 periods (i.e 8 periods

in total with the initial condition) and a single exogenous covariate. We set the common

parameters to γ01 = 1.0, γ02 = 0.5, γ03 = 0.25, β0 = 0.5 and use the following generative

model in the spirit of Honoré and Kyriazidou (2000):

Yi−2 = 1{X ′
i−2β0 + Ai − ϵi−2 ≥ 0}

Yi−1 = 1{γ01Yi−2 +X ′
i−1β0 + Ai − ϵi−1 ≥ 0}

Yi0 = 1{γ01Yi−1 + γ02Yi−2 +X ′
i0β0 + Ai − ϵi0 ≥ 0}

Yit = 1
{
γ01Yit−1 + γ02Yit−2 + γ03Yit−3 +X ′

itβ0 + Ai − ϵit ≥ 0
}
, t = 1, . . . , 5

The disturbances ϵit are iid standard logistic over time, Xit is iid N (0, 1) and the fixed effects

are computed as Ai =
1√
8

5∑
t=−2

Xit. To evaluate the performance of the estimators described

below, we simulate data for four sample sizes : 500, 2000, 8000, 16000, and perform 1000

Monte Carlo replications for each design.

For T = 5, we know from Proposition 4 that 8 valid moment functions are available,

each stemming from the 8 possible transition probabilities of the model (there are really

16 transition probabilities in total but 8 are redundant since probabilities sum to one).

We consider the interaction of all 8 valid moment functions with a constant, the 3 initial

conditions Yi−2, Yi−1, Yi0 and the covariates Xit in each period t ∈ {1, . . . , 5} to construct the
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72× 1 moment vector:

mθ(Yi, Y
0
i , Xi) =



ψ
0|0,0,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,0,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,1,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,1,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,0,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,0,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,1,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,1,1
θ (Y 5

i−1, Y
1
i−2, Xi)



⊗



1

Yi−2

Yi−1

Yi0

X5′
i1



where ⊗ denotes the standard Kronecker product. The choice of this particular set of instru-

ments is of course arbitrary and only motivated by simplicity. We also consider a rescaled

version ofmθ(Yi, Y
0
i , Xi) that we denote m̃θ(Yi, Y

0
i , Xi) where each of the 8 valid moment func-

tions are appropriately rescaled so that ∀y31 ∈ {0, 1}3, supXi,Yi,θ

∣∣∣ψy1|y1,y2,y3θ (Y 5
i−1, Y

1
i−2, Xi)

∣∣∣ <
∞. We do so by normalizing ψ

y1|y1,y2,y3
θ (Y 5

i−1, Y
1
i−2, Xi) by the sum of the absolute values of all

unique values it can take as a function over choice histories Y 5
i1. The rationale for normalizing

the moments originates from Honoré and Weidner (2020) who presented numerical evidence

that a rescaling of this kind improved the finite sample performance of their estimators in the

one and two lags cases. Given, mθ(Yi, Y
0
i , Xi) and m̃θ(Yi, Y

0
i , Xi), we study the properties of

two simple GMM estimators:

θ̂a = argmax
θ∈R4

 1

N

N∑
i=1

mθ(Yi, Y
0
i , Xi)

′ 1

N

N∑
i=1

mθ(Yi, Y
0
i , Xi)


θ̂b = argmax

θ∈R4

 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)

′ 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)


which both put equal weight on their individual components (i.e the weight matrix is the iden-

tity)19. Under standard regularity conditions, θ̂a, θ̂b should be consistent and asymptotically

normal.

19In a previous version of this paper we also considered a two-step “rescaled” estimator that uses a diagonal
weight matrix with the inverse variance of each component in the spirit of Honoré and Weidner (2020). It

performs very similarly to the equally-weighted estimator θ̂b.
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Table 2: Performance of GMM estimators for the AR(3)

γ̂1
a γ̂1

b γ̂2
a γ̂2

b γ̂3
a γ̂3

b β̂a β̂b

N = 500
Bias -0.52 -0.50 -0.51 -0.50 -0.39 -0.32 -0.15 0.10
MAE 0.52 0.69 0.51 0.58 0.39 0.51 0.15 0.14

N = 2000
Bias -0.37 -0.10 -0.45 -0.12 -0.31 -0.04 -0.08 0.02
MAE 0.37 0.42 0.45 0.34 0.31 0.25 0.08 0.06

N = 8000
Bias -0.24 0.04 -0.32 0.01 -0.21 0.01 -0.04 0.00
MAE 0.24 0.17 0.32 0.15 0.21 0.11 0.04 0.03

N = 16000
Bias -0.18 0.01 -0.25 0.00 -0.16 0.00 -0.03 0.00
MAE 0.18 0.11 0.25 0.10 0.16 0.07 0.03 0.02

Notes: Bias and MAE stand for median bias and median absolute error respectively. Reported results are

based on a 1000 replications of the DGP.

Table 2 presents the median bias and median absolute errors of the two GMM estimators

for each design N ∈ {500, 2000, 8000, 16000}. Figure 1 plots their densities which as expected

resemble gaussian distributions for the larger values of N . Interestingly, a first observation

is that both estimators appear to suffer from a negative bias on the lag parameters at least

up to N = 2000. And while this bias effectively vanishes for the “rescaled” GMM estimators

for the larger sample size N ≥ 8000, it remains quite significant for all lag parameters and

also the slope coefficient for the “unnormalized” estimator. This is evident from the sign

of the bias in Table 2 and from the fact that all green densities are to the left of the true

parameters in Figure 1. This observation confirms the practical importance of normalizing all

valid moment functions in binary response logit models to obtain precise estimates in small

samples. Focusing on the “rescaled” estimator θ̂b, we can see that it performs relatively well

for N ≥ 8000 with very little bias. This is corroborated in Figure 1: the blue densities are

approximately centered at the true parameter values for N ≥ 8000 . Estimates for the slope

parameter β are quite accurate even for N = 500 but precise estimation of the transition

parameters requires a larger sample size. In terms of median absolute bias, it is interesting

to note a ranking on the precision of estimates of the transition parameters: the coefficient

on the first lag is noisier than the coefficient on the second lag which itself is noisier than
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Figure 1: Densities of GMM estimators for the AR(3) with one regressor

N = 500 N = 2000 N = 8000 N = 16000
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Notes: The densities of estimates based on the first GMM estimator (i.e θ̂a), the second GMM estimator (i.e

θ̂b) are indicated in green and blue respectively. Reported results are based on a 1000 replications of the DGP

presented above with γ01 = 1.0, γ02 = 0.5, γ03 = 0.25, β0 = 0.5. True parameter values are indicated with a

vertical dashed line.

the coefficient on the third lag for each N ∈ {500, 2000, 8000, 16000}. In an unreported set

of simulations, we have found that this empirical pattern is robust to other choices of the

population parameters and initial condition and also applies to the AR(2) model with a

similar data generating process.
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D.2 Monte Carlo for a VAR(1) logit model

In our next example, we examine a bivariate VAR(1) logit model with T = 3 and scalar

regressorsXm,it in each layerm ∈ {1, 2}. We set the common parameters to γ011 = γ022 = 1.0,

γ012 = γ021 = 0.5, β1 = β2 = 0.5. The data generating process is:

Ym,i0 = 1
{
X ′
m,i0β0m + Am,i − ϵm,it ≥ 0

}
, m = 1, 2

Ym,it = 1
{
γ0m1Y1,it−1 + γ0m2Y2,it−1 +X ′

m,itβ0m + Am,i − ϵm,it ≥ 0
}
, m = 1, 2, t = 1, 2, 3

where the disturbances ϵm,it are iid standard logistic, the covariates Xm,it are iid N (0, 1)

and the fixed effects are computed as Am,i =
1√
4

3∑
t=0

Xm,it. We consider sample sizes N ∈

{2000, 8000, 16000} with 1000 Monte Carlo replications per design.

We use all four valid moment functions implied by Proposition 2 when T = 3 for the VAR(1)

case, viz ψ
k|k
θ (Y 3

i1, Y
1
i0, Xi), k ∈ {(0, 0), (0, 1), (1, 0), (0, 0)} and form the 40×1 moment vector:

mθ(Yi, Y
0
i , Xi) =


ψ

(0,0)|(0,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(0,1)|(0,1)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,0)|(1,0)
θ (Y 3

i1, Y
1
i0, Xi)

ψ
(1,1)|(1,1)
θ (Y 3

i1, Y
1
i0, Xi)


⊗


1

Y 0′
i

X3′
1,i1

X3′
2,i1


Given the importance of rescaling the valid moment functions for better precision of GMM

in the context of the AR(3), we also consider a normalized moment vector m̃θ(Yi, Y
0
i , Xi) in

which each ψ
k|k
θ (Y 3

i1, Y
1
i0, Xi) is divided by the sum of the absolute values of their unique non-

zero entries as a 64-dimensional vector (64 possible choice histories Y 3
i1 per initial condition).

With these moment functions in hand, we then compare the finite sample properties of three

estimators: i) the VAR(1) analogs of θ̂a and θ̂b defined previously for the AR(3), ii) the

iterated GMM estimator θ̂c based on mθ(Yi, Y
0
i , Xi) as in Section 6. The results of the

simulations are summarized in Table 3 and Table 4.

Similarly to the AR(3) example, both the transition parameters and the slope parameters

of θ̂a are negatively biased for the three sample sizes under consideration. This is particularly

true for the “between” state-dependence parameters γ̂12
a, γ̂21

a which maintain a small bias

even for N = 8000, 16000. By comparison, the rescaled GMM estimator θ̂b and the iterated
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Table 3: Performance of GMM estimators for the bivariate VAR(1): transition parameters

γ̂11
a γ̂11

b γ̂11
c γ̂12

a γ̂12
b γ̂12

c γ̂21
a γ̂21

b γ̂21
c γ̂22

a γ̂22
b γ̂22

c

N = 2000
Bias -0.23 0.10 -0.05 -0.21 -0.04 -0.04 -0.20 -0.06 -0.05 -0.24 0.10 -0.05
MAE 0.27 0.23 0.16 0.29 0.24 0.19 0.27 0.23 0.19 0.27 0.23 0.16
Iter 5 5 5 5

N = 8000
Bias -0.07 0.03 -0.00 -0.08 0.00 -0.00 -0.09 -0.01 -0.01 -0.06 0.03 -0.00
MAE 0.13 0.11 0.08 0.14 0.12 0.09 0.15 0.12 0.09 0.12 0.11 0.07
Iter 4 4 4 4

N = 16000
Bias -0.04 0.01 -0.00 -0.05 -0.01 -0.00 -0.07 -0.01 -0.00 -0.03 0.01 0.00
MAE 0.09 0.08 0.05 0.11 0.07 0.06 0.11 0.08 0.06 0.08 0.08 0.06
Iter 3 3 3 3

Notes: Reported results are based on a 1000 replications of the DGP. Bias and MAE stand for median

bias and median absolute error respectively. The convergence criterion for the iterated GMM estimator is∥∥∥θ̂s+1 − θ̂s

∥∥∥ < 10−4 and Iter corresponds to the median number of iterations to reach convergence. Bias and

MAE for the iterated GMM are reported for replications where convergence is attained which is ≈ 91% for

N = 2000 and ≈ 100% for N = 8000, 16000.

GMM estimator θ̂c demonstrate better accuracy, especially for γ12 and γ21 which are really the

key parameters in our empirical application presented in Section 6. In this specific simulation

design, θ̂c slightly outperforms θ̂b for all N = 2000, 8000, 16000 in terms of median bias and

median absolute error for the transition parameters. The comparison is somewhat less clear

for the slope parameters β1, β2.
20

Surprisingly, when experimenting with a trivariate logit extension, we found that the

analog of θ̂b performs very poorly for the same simulation design relative to the iterated

GMM estimator or even the naive equally-weighted GMM estimator θ̂a. This is perhaps

due to the “large” rescaling factor applied to each valid moment function in that case which

pose problems for the optimization of the GMM objective. We have not investigated these

peculiarities - which could be design specific - further at this moment but a more thorough

analysis of the behavior of GMM in future work would be beneficial. The good performance

of θ̂c and this shortcoming of θ̂b in the trivariate case was one additional motivation for

20We also experimented with an iterated GMM estimator based on m̃θ(Yi, Y
0
i , Xi) and found nearly iden-

tical results to θ̂b.
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Table 4: Performance of GMM estimators for the bivariate VAR(1): slope parameters

β̂1
a

β̂1
b

β̂1
c

β̂2
a

β̂2
b

β̂2
c

N = 2000
Bias -0.04 0.01 -0.01 -0.04 0.00 -0.01
MAE 0.06 0.06 0.06 0.06 0.06 0.05
Iter 5 5

N = 8000
Bias -0.01 -0.00 0.00 -0.01 0.00 0.00
MAE 0.03 0.03 0.03 0.03 0.03 0.03
Iter 4 4

N = 16000
Bias -0.00 0.00 0.01 -0.00 0.00 0.01
MAE 0.02 0.02 0.02 0.02 0.02 0.02
Iter 3 3

Notes: Reported results are based on a 1000 replications of the DGP. Bias and MAE stand for median

bias and median absolute error respectively. The convergence criterion for the iterated GMM estimator is∥∥∥θ̂s+1 − θ̂s

∥∥∥ < 10−4 and Iter corresponds to the median number of iterations to reach convergence. Bias and

MAE for the iterated GMM are reported for replications where convergence is attained which is ≈ 91% for

N = 2000 and ≈ 100% for N = 8000, 16000.

concentrating on the iterated GMM estimator in our empirical application.

E Proofs of Theorem 1 and Theorem 3

We focus our attention on proving Theorem 3 since proving Theorem 1 would follow nearly

identical arguments. At each important step of the proof, we highlight where the arguments

for the AR(1) would differ.

Fix a history y ∈ YT and consider the corresponding basis element 1{. = y} of RYT
. We

have:

E (p)

y0,x

[
1{. = y}

]
= P (Yi = y|Y 0

i = y0, Xi = x,Ai = .)

15



where by definition, for all a ∈ R,

P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) =

Ny|y0(ea)

Dy|y0(ea)

Ny|y0(ea) =
T∏
t=1

eyt(
∑p

r=1 γ0ryt−r+x′tβ0+a)

Dy|y0(ea) =
T∏
t=1

(
1 + e

∑p
r=1 γ0ryt−r+x′tβ0+a

)
Notice that Ny|y0(ea) and Dy|y0(ea) are just polynomials of ea - with dependence on x sup-

pressed for conciseness - and that we always have deg
(
Ny|y0(ea)

)
≤ deg

(
Dy|y0(ea)

)
with

strict inequality unless y = 1T . Moreover, since by assumption for any t, s ∈ {1, . . . , T − 1}

and y, ỹ ∈ Yp, γ′0y+x
′
tβ0 ̸= γ′0ỹ+x

′
sβ0 if t ̸= s or y ̸= ỹ, Dy|y0(ea) is a product of distinct irre-

ducible polynomials in ea. Therefore, by standard results on partial fraction decompositions,

we know that there exists a unique set of coefficients (λy0, λ
y
1, . . . , λ

y
T ) ∈ RT+1 independent of

the fixed effect such that:

P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) = λy0 +

T∑
t=1

λyt
1

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

= λy0 + T0(a) + T1(a) + T2(a)

T0(a) = λy1
1

1 + e
∑p

r=1 γ0ry1−r+x′1β0+a

T1(a) =

p∑
t=2

λyt
1

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

T3(a) =
T∑

t=p+1

λyt
1

1 + e
∑p

r=1 γ0ryt−r+x′tβ0+a

with λy0 = 0 unless y = 1T . This decomposition breaks down the conditional probability

P (Yi = y|Y 0
i = y0, Xi = x,Ai = a) into components that depend on the initial condition,

namely T0(a), T1(a), and components that do not, i.e T2(a). Notice that T1(a) would not

16



appear in the AR(1) case. Starting with the first group, we can write:

T0(a) = λy1π
0|y0
0 (a, x)

= λy11{y0 = 0}πy0|y
0

0 (x, a) + λy11{y0 = 1}
(
1− π

y0|y0
0 (x, a)

)
= λy11{y0 = 1}+ λy11{y0 = 0}πy0|y

0

0 (x, a)− λy11{y0 = 1}πy0|y
0

0 (x, a)

and

T1(a) =

p∑
t=2

λyt
∑

ỹt−1
1 ∈Yt−1

1{yt−1 = ỹ1, . . . , y1 = ỹt−1}π
0|ỹt−1

1 ,y0,...,y−(p−t)

t−1 (a, x)

=

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 0, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
0|0,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

+

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}
(
1− π

1|1,ỹt−1
2 ,y0,...,y−(p−t)

t−1 (a, x)

)

=

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}

+

p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 0, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
0|0,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

−
p∑
t=2

λyt
∑

ỹt−2
2 ∈Yt−2

1{yt−1 = 1, yt−2 = ỹ2, . . . , y1 = ỹt−1}π
1|1,ỹt−1

2 ,y0,...,y−(p−t)

t−1 (a, x)

17



Then, for the second group,

T3(a) =
T∑

t=p+1

λy,y
0

t

∑
ỹp1∈Yp

1{yt−1 = ỹ1, . . . , yt−p = ỹp}π
0|ỹp1
t−1 (a, x)

=
T∑

t=p+1

λy,y
0

t

∑
ỹp2∈Yp−1

1{yt−1 = 0, yt−2 = y2, . . . , yt−p = ỹp}π
0|0,ỹp2
t−1 (a, x)

+
T∑

t=p+1

λy,y
0

t

∑
ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}
(
1− π

1|1,ỹp2
t−1 (a, x)

)

= +
T∑

t=p+1

λy,y
0

t

∑
ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}

+
T∑

t=p+1

λy,y
0

t

∑
ỹp2∈Yp−1

1{yt−1 = 0, yt−2 = y2, . . . , yt−p = ỹp}π
0|0,ỹp2
t−1 (a, x)

−
T∑

t=p+1

λy,y
0

t

∑
ỹp−1
2 ∈Yp−1

1{yt−1 = 1, yt−2 = y2, . . . , yt−p = ỹp}π
1|1,ỹp2
t−1 (a, x)

The unique decompositions for each term make it clear that

Fy0,p,T =

1, π
y0|y0
0 (., x),

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1


forms a basis of Im

(
E (p)

y0,x

)
if we can show that the transition probabilities are elements of

Im
(
E (p)

y0,x

)
. We now argue that it is indeed the case:

• First, π
y0|y0
0 (., x) ∈ Im

(
E (p)

y0,x

)
since

E[(1− Yi1)|Y 0
i = y0, Xi = x,Ai = a] =

1

1 + e
∑p

r=1 γ0ry1−r+x′1β0+a
= π

y0|y0
0 (a, x), if y0 = 0

E[Yi1|Y 0
i = y0, Xi = x,Ai = a] =

e
∑p

r=1 γ0ry1−r+x′1β0+a

1 + e
∑p

r=1 γ0ry1−r+x′1β0+a
= π

y0|y0
0 (a, x), if y0 = 1

• Second,

{(
π
y1|yp1
t−1 (., x)

)
yp1∈Yp

}T
t=p+1

∈ Im
(
E (p)

y0,x

)
by Theorem 4. For the AR(1) model,

one would appeal to Lemma 2.

• Finally, one can easily adapt the proof of Theorem 4 to show that
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{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

∈ Im
(
E (p)

y0,x

)
. First, it follows immediately

from Lemma 11 that:(
π
y1|y1,y0,...,y−(p−2)

1 (., x))
)
y1∈Yt−1

∈ Im
(
E (p)

y0,x

)
Then, by inspecting the induction argument of Theorem 4, it is easily seen that the

result that for T ≥ p+ 1 and t ∈ {p, . . . , T − 1}

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

for k = 0, . . . , p − 2 can be generalized. It actually holds for t = k + 1 when k =

0, . . . , p− 2, yielding

E
[
ϕ
y1|yt1
θ0

(Yit+1, Yit, Y
t−1
i1−p, Xi)|Y 0

i , Xi, Ai

]
= π

y1|yt1,Yi0,...,Yit−(p−1)

t (Ai, Xi)

This is the desired result. The terms

{(
π
y1|yt−1

1 ,y0,...,y−(p−t)

t−1 (., x))

)
yt−1
1 ∈Yt−1

}p

t=2

are not

present in the AR(1) case which simplifies the argument.

Thus, we have shown that Fy0,p,T is a basis of Im
(
E (p)

y0,x

)
. Next, since E (p)

y0,x is a linear mapping,

we know by the rank nullity theorem that:

dim
(
ker(E (p)

y0,x)
)
= dim

(
R{0,1}T

)
− rank

(
E (p)

y0,x

)
Therefore, we have the following implications:

1. If T ≤ p, |Fy0,p,T | = 1 + 1 +
T∑
t=2

2t−1 = 2 +
T−1∑
t=1

2t = 2 + 21−2T−1

1−2
= 2T . Hence,

rank
(
E (p)

y0,x

)
= 2T and the rank nullity theorem implies dim

(
ker(E (p)

y0,x)
)
= 0

2. If T = p+1, |Fy0,p,T | = 1+1+
p∑
t=2

2t−1+2p = 2×2p = 2p+1. Then, rank
(
E (p)

y0,x

)
= 2T

and the rank nullity theorem implies dim
(
ker(E (p)

y0,x)
)
= 0

3. If T ≥ p+ 2, |Fy0,p,T | = 1 + 1 +
p∑
t=2

2t−1 + 2p(T − p) = 2p + 2p(T − p) = (T − p+ 1)2p.

It follows that rank
(
E (p)

y0,x

)
= (T − p+ 1)2p and dim

(
ker(E (p)

y0,x)
)
= 2T − (T − p+ 1)2p
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F Proofs of Propositions 1, 2, 4

Propositions 1, 2 and 4 all follow from the same strategy proof based on the the law of

iterated expectations. We focus on Proposition 1 here and leave the other cases to the reader.

Take any t, s verifying T − 1 ≥ t > s ≥ 1. For any k ∈ Y , we have

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s+1
is−1)|Yi0, Y s−1

i1 , Ai

]
= E

[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1)− ϕ
k|k
θ0

(Yis+1, Yis, Yis−1)|Yi0, Y s−1
i1 , Ai

]
= E

[
E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1)|Yi0, Y t−1
i1 , Ai

]
|Yi0, Y s−1

i1 , Ai

]
− πk|k(Ai)

= E
[
πk|k(Ai)|Yi0, Y s−1

i1 , Ai

]
− πk|k(Ai)

= πk|k(Ai)− πk|k(Ai)

= 0

The second and third equalities follow from the law of iterated expectation and Lemma 1.

G Proofs of Lemma 1 and Lemma 2

Without loss of generality, we will consider the case with covariates. The proposed functional

form for the transition function ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) implies that it is null when Yit ̸= 0.

Hence

E
[
ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

1

1 + eγ0Yit−1+X′
itβ0+Ai

×(
eX

′
it+1β0+Ai

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (1, 0, Yit−1, Xi) +

1

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (0, 0, Yit−1, Xi)

)

Thus, to obtain the transition probability π
0|0
t (Ai, Xi) =

1

1+e
X′

it+1
β0+Ai

at θ = θ0, we must set:

ϕ
0|0
θ (1, 0, Yit−1, Xi) = eγYit−1+(Xit−Xit+1)

′β

ϕ
0|0
θ (0, 0, Yit−1, Xi) = 1

ϕ
0|0
θ (k, 1, Yit−1, Xi) = 0, ∀k ∈ Y

This can be expressed compactly as: ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

Yit+1(γYit−1−∆X′
it+1β)
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Likewise, for ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) we have:

E
[
ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

eγ0Yit−1+X
′
itβ0+Ai

1 + eγ0Yit−1+X′
itβ0+Ai

×(
eγ0+X

′
it+1β0+Ai

1 + eγ0+X
′
it+1β0+Ai

ϕ
1|1
θ (1, 1, Yit−1, Xi) +

1

1 + eγ0+X
′
it+1β0+Ai

ϕ
1|1
θ (0, 1, Yit−1, Xi)

)

Hence, to get π
1|1
t (Ai, Xi) =

e
γ0+X′

it+1β0+Ai

1+e
γ0+X′

it+1
β0+Ai

at θ = θ0, we must set:

ϕ
1|1
θ (1, 1, Yit−1, Xi) = 1

ϕ
1|1
θ (0, 1, Yit−1, Xi) = eγ(1−Yit−1)+(Xit+1−Xit)

′β

ϕ
1|1
θ (k, 0, Yit−1, Xi) = 0, ∀k ∈ Y

This can be written succinctly as: ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+β∆Xit+1)

H Proofs of Lemmas 3,10 and Corollaries 3.1, 10.1

The proofs of Lemma 3, Lemma 10, Corollary 3.1, Corollary 10.1 all follow the same logic

based on the use of a partial fraction expansion. We prove Lemma 3 here and leave the other

cases to the reader.

The result hinges on the simple rational fraction identity provided in Lemma 8 that for

any three reals v, u, a, we have:

1

1 + ev+a
+ (1− eu−v)

ev+a

(1 + ev+a)(1 + eu+a)
=

1

(1 + eu+a)

ev+a

1 + ev+a
+ (1− e−(u−v))

eu+a

(1 + ev+a)(1 + eu+a)
=

eu+a

(1 + eu+a)
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By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
(1− Yis) + ω

0|0
t,s (θ0)Yisϕ

0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)E

[
YisE

[
ϕ
0|0
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)E

[
Yis|Yi0, Y s−1

i1 , Xi, Ai
] 1

1 + eκ
0|0
t (θ0)+Ai

=
1

1 + eµs(θ0)+Ai
+ (1− eκ

0|0
t (θ0)−µs(θ0))

eµs(θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
0|0
t (θ0)+Ai)

=
1

1 + eκ
0|0
t (θ0)+Ai

= π
0|0
t (Ai, Xi)

The second equality follows from the measureability of the weight ω
0|0
t,s (θ0) with respect to

the conditioning set. The third equality follows from the law of iterated expectations and

Lemma 2. The penultimate equality uses the first mathematical identity presented above.

Similarly,

E
[
ζ
1|1
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
Yis + ω

1|1
t,s (θ0)(1− Yis)ϕ

1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)E

[
(1− Yis)E

[
ϕ
1|1
θ0
(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)E

[
(1− Yis)|Yi0, Y s−1

i1 , Xi, Ai
] eκ

1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

=
eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+
(
1− e−(κ

1|1
t (θ0)−µs(θ0))

) eκ
1|1
t (θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
1|1
t (θ0)+Ai)

=
eκ

1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

= π
1|1
t (Ai, Xi)

The second equality follows from the measurability of the weight ω
0|0
t,s (θ0) with respect to

the conditioning set. The third equality follows from the law of iterated expectations and

Lemma 2. The penultimate equality uses the second mathematical identity presented above.
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I Proof of Theorem 4

We start by proving the following Lemma

Lemma 11. In model (5), with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yt, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

Then,

E
[
ϕ
0|0
θ0
(Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

0|0,Yit−1,...,Yit−(p−1)

t (Ai, Xi)

=
1

1 + e
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

E
[
ϕ
1|1
θ0
(Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

1|1,Yit−1,...,Yit−(p−1)

t (Ai, Xi)

=
eγ01+

∑p
l=2 γ0lYit+1−l+X

′
it+1β0+Ai

1 + eγ01+
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

Instead of verifying the result directly from the expression given in the Lemma, it is easier to

start from the heuristic idea, emphasized throughout the text, that we look for two functions

such that:

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)ϕ

0|0
θ (Yit+1, 0, Y

t−1
it−p, Xi)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yitϕ

1|1
θ (Yit+1, 1, Y

t−1
it−p, Xi)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Y
t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

k|k,Yit−1,...,Yit−(p−1)

t (Ai, Xi), ∀k ∈ Y

By definition, ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) is null when Yit ̸= 0. Hence

E
[
ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , X,A

]
=

1

1 + e
∑p

l=1 γ0lYit−l+X
′
itβ0+Ai

× (

e
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

1 + e
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

ϕ
0|0
θ (1, 0, Y t−1

it−p, Xi) +
1

1 + eγ02Yit−1+X′
it+1β0+Ai

ϕ
0|0
θ (0, 0, Y t−1

it−p, Xi))
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Thus, to obtain π
0|0,Yit−1,...,Yit−(p−1)

t (Ai, Xi) =
1

1+e
∑p

l=2
γ0lYit+1−l+X′

it+1
β0+Ai

at θ = θ0, we must set:

ϕ
0|0
θ (1, 0, Y t−1

it−p, Xi) = eγ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β

ϕ
0|0
θ (0, 0, Y t−1

it−p, Xi) = 1

ϕ
0|0
θ (k, 1, Y t−1

it−p, Xi) = 0,∀k ∈ Y

more compactly this writes,

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

Analogously, ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi) is null when Yit ̸= 1. Hence

E
[
ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi))|Y 0

i , Y
t−1
1 , X,A

]
=

e
∑p

l=1 γ0lYit−l+X
′
itβ0+Ai

1 + e
∑p

l=1 γ0lYit−l+X
′
itβ0+Ai

× (

eγ01+
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

1 + eγ01+
∑p

l=2 γ0lYit+1−l+X
′
it+1β0+Ai

ϕ
1|1
θ (1, 1, Y t−1

it−p, Xi) +
1

1 + eγ01+γ02Yit−1+X′
it+1β0+Ai

ϕ
1|1
θ (0, 1, Y t−1

it−p, Xi))

Consequently, to get π
1|1,Yit−1,...,Yit−(p−1)

t (Ai, Xi) =
e
γ01+

∑p
l=2

γ0lYit+1−l+X′
it+1β0+Ai

1+e
γ01+

∑p
l=2

γ0lYit+1−l+X′
it+1

β0+Ai
at θ = θ0, we

must set:

ϕ
1|1
θ (1, 1, Y t−1

it−p, Xi) = 1

ϕ
1|1
θ (0, 1, Y t−1

it−p, Xi) = eγ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β

ϕ
1|1
θ (k, 0, Y t−1

it−p, Xi) = 0,∀k ∈ Y

This can be written succinctly as:

ϕ
1|1
θ (Yit+1, Yt, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

which completes the proof of the Lemma.

Now, for T ≥ p + 1 fix t ∈ {p, . . . , T − 1} and y = (y1, . . . , yp) = yp1 ∈ {0, 1}p. We will

prove by finite induction the statement P(k):

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

for k = 0, . . . , p− 2 for p ≥ 2.
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Base step:

P(0) is true by Lemma 11 which also deals with the edge case p = 2. Thus, let us assume

p ≥ 3 in the remainder of the induction argument.

Induction Step:

Suppose P(k − 1) is true for some k ∈ {1, . . . , p− 2}, we show that P(k) is true. Using the

law of iterated expectations, the induction hypothesis P(k− 1) and the identities of Lemma

8, we have:

If y1 = 0, yk+1 = 1

E
[
ϕ
0|0,yk2 ,1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
(1− Yit−k) + w

0|0,yk2 ,1
t (θ0)ϕ

0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai

+ w
0|0,yk2 ,1
t (θ0)E

[
E
[
ϕ
0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)|Y 0

i , Y
t−k
i1 , Xi, Ai

]
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai
w

0|0,yk2 ,1
t (θ0)E

[
π
0|0,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi)Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai
+ w

0|0,yk2 ,1
t (θ0)E

[
1

1 + e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

=
1

1 + eut−k(θ0)+Ai
+ (1− e(k

0|0,yk2 ,1

t (θ0)−ut−k(θ0)))
1

1 + ek
0|0,yk2 ,1

t (θ0)+Ai

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

=
1

1 + ek
0|0,yk2 ,1

t (θ0)+Ai

= π
0|0,yk2 ,1,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)
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If y1 = 0, yk+1 = 0

E
[
ϕ
0|0,yk2 ,0
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
1− Yit−k − w

0|0,yk2 ,0
t (θ0)

(
1− ϕ

0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

− w
0|0,yk2 ,0
t (θ0)×

E

[
E
[(

1− ϕ
0|0,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
|Y 0
i , Y

t−k
i1 , Xi, Ai

]
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]

= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
− w

0|0,yk2 ,0
t (θ0)E

[
(1− π

0|0,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi))(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

− w
0|0,yk2 ,0
t (θ0)E

[
e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

1 + e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

= 1−

 eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ (1− e−(k

0|0,yk2 ,0

t (θ0)−ut−k(θ0)))
ek

0|0,yk2 ,0

t (θ0)+Ai

1 + ek
0|0,yk2 ,0

t (θ0)+Ai

1

1 + eut−k(θ0)+Ai


= 1− ek

0|0,yk2 ,0

t (θ0)+Ai

1 + ek
0|0,yk2 ,0

t (θ0)+Ai

=
1

1 + ek
0|0,yk2 ,0

t (θ0)+Ai

= π
0|0,yk2 ,0,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)
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If y1 = 1, yk+1 = 0

E
[
ϕ
1|1,yk2 ,0
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
Yit−k + w

1|1,yk2 ,0
t (θ0)ϕ

1|1,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ w

1|1,yk2 ,0
t (θ0)×

E
[
E
[
ϕ
1|1,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)|Y 0

i , Y
t−k
i1 , Xi, Ai

]
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ w

1|1,yk2 ,0
t (θ0)E

[
π
1|1,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi)(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

+ w
1|1,yk2 ,0
t (θ0)E

[
eγ01+

∑k
r=2 γ0ryr+

∑p
r=k+1 γ0rYit−(r−1)+X

′
it+1β0+Ai

1 + eγ01+
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

=
eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ (1− e−(k

1|1,yk2 ,0

t (θ0)−ut−k(θ0)))
ek

1|1,yk2 ,0

t (θ0)+Ai

1 + ek
1|1,yk2 ,0

t (θ0)+Ai

1

1 + eut−k(θ0)+Ai

=
ek

1|1,yk2 ,0

t (θ0)+Ai

1 + ek
1|1,yk2 ,0

t (θ0)+Ai

= π
1|1,yk2 ,0,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)
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If y1 = 1, yk+1 = 1

E
[
ϕ
1|1,yk2 ,1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
1− (1− Yit−k)− w

1|1,yk2 ,1
t (θ0)

(
1− ϕ

1|1,yk2
θ0

(Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= 1− 1

1 + eut−k(θ0)+Ai

− w
1|1,yk2 ,1
t (θ0)E

E[(1− π
1|1,yk2 ,Yit−k,...,Yit−(p−1)

t (Ai, Xi)

)
|Y 0
i , Y

t−k
i1 , Xi, Ai

]
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai


= 1− 1

1 + eut−k(θ0)+Ai

− w
1|1,yk2 ,1
t (θ0)E

[
1

1 + eγ01+
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X
′
it+1β0+Ai

Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

= 1−

 1

1 + eut−k(θ0)+Ai
+ (1− e(k

1|1,yk2 ,1

t (θ0)−ut−k(θ0)))
1

1 + ek
1|1,yk2 ,1

t (θ0)+Ai

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai


= 1− 1

1 + ek
1|1,yk2 ,1

t (θ0)+Ai

=
ek

1|1,yk2 ,1

t (θ0)+Ai

1 + ek
1|1,yk2 ,1

t (θ0)+Ai

= π
1|1,yk2 ,1,Yit−k,...,Yit−(p−1)

t (Ai, Xi)

Putting these intermediate results together, we have effectively proved that

E
[
ϕ
y1|yk+1

1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Yit−(k+1),...,Yit−(p−1)

t (Ai, Xi)

which shows that P(k) is true and completes the induction argument.

Now, it only remains to show that

E
[
ϕ
y1|yp1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−1), Xi)|Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp1
t (Ai, Xi)

To this end, it suffices to perform calculations identical to those used in the induction argu-
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ment but using this time

E
[
ϕ
y1|yp−1

1
θ0

(Yit+1, Yit, Y
t−1
it−(2p−2), Xi)|Y 0

i , Y
t−(p−1)
i1 , Xi, Ai

]
= π

y1|yp−1
1 ,Yit−(p−1)

t (Ai, Xi)

k
y1|yp1
t (θ) =

p∑
r=1

γryr +X ′
it+1β

ut−(p−1)(θ) =

p∑
r=1

γrYit−(r+p−1) +X ′
it−(p−1)β

w
y1|yp1
t (θ) =

[
1− e(k

y1|y
p
1

t (θ)−ut−(p−1)(θ))

]yp [
1− e−(k

y1|y
p
1

t (θ)−ut−(p−1)(θ))

]1−yp
This concludes the proof of the theorem.

J Identification of the AR(2) with strictly exogenous

regressors

J.1 Identification for T = 3 with variability in the initial condition

By Theorem 4, the transition functions associated to:

π
0|0,0
2 (Ai, Xi), π

0|0,1
2 (Ai, Xi), π

1|1,0
2 (Ai, Xi), π

1|1,1
2 (Ai, Xi) are given by:

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = eγ1Yi0+γ2Yi−1−X′

i31β(1− Yi1)

+
(
1− eγ1Yi0+γ2Yi−1−X′

i31β
)
(1− Yi1)(1− Yi2)e

Yi3(γ2Yi0−X′
i32β)

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = (1− Yi1) +

(
1− e−γ1Yi0+γ2(1−Yi−1)+X

′
i31β
)
Yi1(1− Yi2)e

Yi3(γ1−γ2(1−Yi0)−X′
i32β)

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = eγ1(1−Yi0)+γ2(1−Yi−1)+X

′
i31βYi1

+
(
1− eγ1(1−Yi0)+γ2(1−Yi−1)+X

′
i31β
)
Yi1Yi2e

(1−Yi3)(γ2(1−Yi0)+X′
i32β)

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = Yi1 +

(
1− e−γ1(1−Yi0)+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2e

(1−Yi3)(γ1−γ2Yi0+X′
i32β)

Moreover, an application of Lemma 11 gives

ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1, Xi) = (1− Yi1)e

Yi2(γ1Yi0−γ2(Yi0−Yi−1)−X′
i21β)

ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1, Xi) = Yi1e

(1−Yi2)(γ1(1−Yi0)+γ2(Yi0−Yi−1)+X
′
i21β)
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such that:

E
[
ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1, Xi)|Yi−1, Yi0, Ai

]
= π

0|0,Yi0
1 (Ai, Xi) =

1

1 + eγ2Yi0+X
′
i2β+Ai

E
[
ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1, Xi)|Yi−1, Yi0, Ai

]
= π

1|1,Yi0
1 (Ai, Xi) =

eγ1+γ2Yi0+X
′
i2β+Ai

1 + eγ1+γ2Yi0++X′
i2β+Ai

For π
0|0,0
2 (Ai, Xi) and π

0|0,Yi0
1 (Ai, Xi) to match, we require both Yi0 = 0 and Xi3 = Xi2 in

which case:

ϕ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi) = eγ2Yi−1−X′
i31β(1− Yi1) +

(
1− eγ2Yi−1−X′

i31β
)
(1− Yi1)(1− Yi2)

ϕ
0|0
θ (Y 2

i1, 0, Yi−1, Xi) = (1− Yi1)e
Yi2(γ2Yi−1−X′

i31β)

= (1− Yi1)Yi2e
γ2Yi−1−X′

i31β + (1− Yi1)(1− Yi2)

Therefore,

ψ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi) = ϕ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi)− ϕ
0|0
θ (Y 2

i1, 0, Yi−1, Xi) = 0

So there is no information about the model parameters in this moment function.

For π
0|0,1
2 (Ai, Xi) and π

0|0,Yi0
1 (Ai, Xi) to match, we require both Yi0 = 1 and Xi3 = Xi2 in

which case:

ϕ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = (1− Yi1) +
(
1− e−γ1+γ2(1−Yi−1)+X

′
i31β
)
Yi1(1− Yi2)e

γ1Yi3

ϕ
0|0
θ (Y 2

i1, 1, Yi−1, Xi) = (1− Yi1)e
Yi2(γ1−γ2(1−Yi−1)−X′

i31β)

Then, a valid moment condition that depends on all model parameters is:

ψ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = ϕ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi)− ϕ
0|0
θ (Y 2

i1, 1, Yi−1, Xi)

=
(
1− e−γ1+γ2(1−Yi−1)+X

′
i31β
)
eγ1Yi1(1− Yi2)Yi3

+
(
1− e−γ1+γ2(1−Yi−1)+X

′
i31β
)
Yi1(1− Yi2)(1− Yi3)

− eγ1−γ2(1−Yi−1)−X′
i31β(1− e−γ1+γ2(1−Yi−1)+X

′
i31β)(1− Yi1)Yi2

Rescaling this moment function by the factor
(
eγ1−γ2(1−Yi−1)−X′

i31β(1− e−γ1+γ2(1−Yi−1)+X
′
i31β)

)−1

,
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one obtains

ψ̃
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = eγ2(1−Yi−1)+X
′
i31βYi1(1− Yi2)Yi3 + e−γ1+γ2(1−Yi−1)+X

′
i31βYi1(1− Yi2)(1− Yi3)

− (1− Yi1)Yi2

Thus, for for the initial condition Yi0 = 1, Yi−1 = 1, we have

ψ̃
0|0,1
θ (Y 3

i1, 1, 1, Xi) = eX
′
i31βYi1(1− Yi2)Yi3 + e−γ1+X

′
i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

which only depends on γ1 and β. In the notation of Honoré and Weidner (2020), this coincides

with their moment function m(1,1). Clearly, it is strictly decreasing in γ1. Furthermore, this

moment function is either increasing or decreasing in βk depending on the sign of Xi3k−Xi1k.

Honoré and Weidner (2020) show that these monotonocity properties can be exploited to

uniquely identifies γ1, β. Instead, for the initial condition Yi0 = 1, Yi−1 = 0, we have

ψ̃
0|0,1
θ (Y 3

i1, 1, 0, Xi) = eγ2+X
′
i31βYi1(1− Yi2)Yi3 + e−γ1+γ2+X

′
i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

which Honoré and Weidner (2020) denote as m(1,0). Provided that γ1, β are identified, the

strict monotonicity of the moment functions in γ2 ensure that γ2 is identified.

Analogously, for π
1|1,0
2 (Ai, Xi) and π

0|0,Yi0
1 (Ai) to match, we require both Yi0 = 0 and Xi3 =

Xi2 in which case:

ϕ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = Yi1 +
(
1− e−γ1+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2e

γ1(1−Yi3)

ϕ
1|1
θ (Y 2

i1, 0, Yi−1, Xi) = Yi1e
(1−Yi2)(γ1−γ2Yi−1+X

′
i31β)

Then, a valid moment function that depends on all model parameters is:

ψ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = ϕ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi)− ϕ
1|1
θ (Y 2

i1, 0, Yi−1, Xi)

=
(
1− e−γ1+γ2Yi−1−X′

i31β
)
eγ1(1− Yi1)Yi2(1− Yi3)

+
(
1− e−γ1+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2Yi3

− eγ1−γ2Yi−1+X
′
i31β
(
1− e−γ1+γ2Yi−1−X′

i31β
)
Yi1(1− Yi2)

Rescaling this moment function by the factor

(
eγ1−γ2Yi−1+X

′
i31β
(
1− e−γ1+γ2Yi−1−X′

i31β
))−1

,
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one obtains

ψ̃
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = eγ2Yi−1−X′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1+γ2Yi−1−X′

i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

For the initial condition Yi0 = 0, Yi−1 = 0, we have

ψ̃
1|1,0
θ (Y 3

i1, 0, 0, Xi) = e−X
′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1−X

′
i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

This moment function also only depends on γ1, β and coincides with the moment func-

tion m(0,0) in Honoré and Weidner (2020). Similarly to ψ̃
0|0,1
θ (Y 3

i1, 1, 1, Xi), the monotonicity

properties of ψ̃
1|1,0
θ (Y 3

i1, 0, 0, Xi) can be exploited to uniquely identifies γ1, β (see Honoré and

Weidner (2020)). Instead, for the initial condition Yi0 = 0, Yi−1 = 1, we obtain

ψ̃
1|1,0
θ (Y 3

i1, 0, 1, Xi) = eγ2−X
′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1+γ2−X

′
i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

Provided that γ1, β is identified, the strict monotonicity of this moment function in γ2 implies

that it identifies γ2 uniquely. This is m(0,1) in Honoré and Weidner (2020).

Lastly, for π
1|1,1
2 (Ai) and π

1|1,Yi0
1 (Ai) to match, we require both Yi0 = 1 and Xi3 = Xi2 in

which case:

ϕ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi) = eγ2(1−Yi−1)+X
′
i31βYi1 +

(
1− eγ2(1−Yi−1)+X

′
i31β
)
Yi1Yi2

ϕ
1|1
θ (Y 2

i1, 1, Yi−1, Xi) = Yi1e
(1−Yi2)(γ2(1−Yi−1)+X

′
i21β)

= Yi1(1− Yi2)e
γ2(1−Yi−1)+X

′
i21β + Yi1Yi2

Then, a valid moment function

ψ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi) = ϕ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi)− ϕ
1|1
θ (Y 2

i1, 1, Yi−1, Xi)

= 0

is identically zero and hence contains no information about the model parameters.

J.2 Proof of Theorem 5

We recall from the discussion of Section 4.5 that T = 4 and Kx ≥ 2 so that there are at least

2 exogenous explanatory variables. We have Xit = (Wit, R
′
it)

′ ∈ RKx , β = (βW , β
′
R)

′ ∈ RKx
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and Zi = (R′
i,Wi1,Wi3,Wi4)

′ ∈ R4Kx−1 . Our goal is to prove Theorem 5 under Assumptions

2 and 3.

Specializing Proposition 4 to the AR(2) with T = 4 yields the valid moment function:

ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) =

(
eγ2Yi0−X

′
i42β − 1

)
(1− Yi1)(1− Yi2)Yi3

+

[
eγ2Yi0−X

′
i42β +

(
1− eγ2Yi0−X

′
i42β
)
e−X

′
i43β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ eγ1(1−Yi0)+γ2(Yi0−Yi−1)+X
′
i21βYi1(1− Yi2)Yi3

+ e−γ1Yi0−γ2Yi−1+X
′
i41β

[
eγ1+γ2Yi0−X

′
i42β +

(
1− eγ1+γ2Yi0−X

′
i42β
)
eγ2−X

′
i43β

]
Yi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

− (1− Yi1)Yi2

Define, the “limiting” moment function, where we have taken Wi2 to +∞

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)Yi3

+
[
eX

′
i34β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X
′
i31βYi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X
′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

(11)

For s ∈ {−,+}Kx , consider the moment objective

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
We will show in two successive steps (a) and (b) that

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
(a)

= E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = ∞
]

(b)
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To establish (a), we start by observing that the history sequence (1 − Yi1)Yi2 featuring in

ψ
0|0,0
θ has expectation zero. To see this, note that by iterated expectations

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
= lim

w2→∞

∫
eγ02y0+x

′
2β0+a

1 + eγ02y0+x
′
2β0+a

1

1 + eγ01y0+γ02yi−1+x′1β0+a
p(a, z|y0,Xs, w2)dadz

Now, p(a, z|y0,Xs, w2) = p(a|y0, z, w2)p(z|y0,Xs, w2) = p(a|y0, z, w2)
p(z|y0,w2)1{Xi∈Xs}∫

Xs
p(z|y0,w2)dz

. Hence,

by part (iii) of Assumption 3, an integrable dominating function of the integrand is

eγ02y0+x
′
2β0+a

1 + eγ02y0+x
′
2β0+Ai

1

1 + eγ01y0+γ02yi−1+x′1β0+a
p(a, z|y0,Xs, w2) ≤ d0(a)

d2(z)∫
Xs
d1(z)dz

Moreover, by parts (ii)-(iii) of Assumption 3 and the Dominated Convergence Theorem,

lim
w2→∞

p(a, z|y0,Xs, w2) = q(a|y0, z)
q(z|y0)1{Xi ∈ Xs}∫

Xs
q(z|y0)dz

≡ q(a, z|y0,Xs)

Hence another application of the Dominated Convergence Theorem gives

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
=

∫
lim
w2→∞

eγ02y0+x
′
2β0+a

1 + eγ02y0+x
′
2β0+a

1

1 + eγ01y0+γ02yi−1+x′1β0+a
p(a, z|y0,Xs, w2)dadz

=

∫
0× q(a, z|y0,Xs)dadz

= 0

where the third line follows from the fact that limw2→∞ ew2βW = 0 by Assumption

2. Applying the same arguments to each remaining summand of ψ
0|0,0
θ and collecting

terms delivers (a). To obtain (b), we note that by part (iv) of Assumption 2, w2 7→

E
[
ψ

0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
is continuous with a well defined limit

at infinity in light of (a). As a result, we can work directly with its continuous extension at

infinity.

Let us focus on the initial condition y0 = y−1 = 0. It is clear from Equation (6) that

Ψ
0|0,0
s,0,0(θ) does not depend on γ1. Furthermore, by parts (i) of Assumption 3 we note that we
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have the following integrable dominating functions for the derivative:∣∣∣∣∣∣∂ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂γ2

∣∣∣∣∣∣ = eγ2+X
′
i31βYi1(1− Yi2)(1− Yi3)Yi4 ≤ sup

g2∈G2,b∈B
eg2+2max(|x̄|,|x|)∥b∥1

∣∣∣∣∣∣∂ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂βk

∣∣∣∣∣∣ =
∣∣∣∣Xik,34e

X′
i34β(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+Xik,31e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)Yi4

+Xik,41e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)(1− Yi4)

∣∣∣∣
≤
∣∣Xik,34

∣∣eX′
i34β +

∣∣Xik,31

∣∣eγ2+X′
i31β +

∣∣Xik,41

∣∣eγ2+X′
i31β

≤ 2max(|x̄|, |x|) sup
b∈B

e2max(|x̄|,|x|)∥b∥1(1 + 2 sup
g2∈G2

eg2)

Hence, by Leibniz integral rule, we get

∂Ψ
0|0,0
s,0,0(θ)

∂γ2

= E

∂ψ0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

∂γ2
|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


= E

[
eγ2+X

′
i31βYi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Xi ∈ Xs,Wi2 = ∞
]

= E

eγ2+X′
i31β E

[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


> 0

35



Similarly,

∂Ψ
0|0,0
s,0,0(θ)

∂βk

= E

∂ψ0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi)

∂βk
|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


= E

[
Xik,34e

X′
i34β×

E
[
(1− Yi1)(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


+ E

[
Xik,31e

γ2+X′
i31β×

E
[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


+ E

[
Xik,41e

γ2+X′
i31β×

E
[
Yi1(1− Yi2)(1− Yi3)(1− Yi4)|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai
]︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


The last display shows that

∂Ψ
0|0,0
s,0,0(θ)

∂βk
> 0 if sk = + and

∂Ψ
0|0,0
s,0,0(θ)

∂βk
< 0 if sk = −. Therefore,

appealing to Lemma 2 in Honoré and Weidner (2020), we conclude that the 2Kx system of

equations in Kx + 1 unkowns given by:

Ψ
0|0,0
s,0,0(θ) = 0, ∀s ∈ {−,+}Kx

has at most one solution. It is precisely (γ02, β0), since the validity of ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)

for arbitrary Xi directly implies the validity of the limiting moment ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)

at “Wi2 = ∞”. Then, notice that for any other initial condition y0 ∈ {(0, 1), (1, 0), (1, 1)},

the objective Ψ
0|0,0
s,y0 (θ) is strictly monotonic in γ1. Hence, given (γ02, β0), it point identifies

γ01. This concludes the proof of Theorem 5.
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K Proof of Proposition 3

We recall that by definition,

Π
ks1|l

p
1

t (y0, xt+s1 ) =

E
[
P (Yit+s = ks, . . . , Yit+1 = k1 |Yit = l1, . . . , Yit−(p−1) = lp, X

t+s
i1 = xt+s1 , Ai) |Y 0

i = y0, X t+s
i1 = xt+s1

]
We have

P (Yit+s = ks, . . . , Yit+1 = k1 |Yit = l1, . . . , Yit−(p−1) = lp, X
t+s
i1 = xt+s1 , Ai) =

Nks1|l
p
1(ea)

Dks1|l
p
1(ea)

where Nks1|l
p
1(ea), Dks1|l

p
1(ea) are polynomials in ea. There are two cases to consider.

Case 1: s < p

Then,

Nks1|l
p
1(ea) = ek1(

∑p
r=1 γ0rlr+x

′
t+1β0+a)

s−1∏
j=1

ekj+1(
∑j

r=1 γ0rkj+1−r+
∑p

r=j+1 γ0rlr−j+x
′
t+1+jβ0+a)

Dks1|l
p
1(ea) =

(
1 + e

∑p
r=1 γ0rlr+x

′
t+1β0+a

) s−1∏
j=1

(
1 + e

∑j
r=1 γ0rkj+1−r+

∑p
r=j+1 γ0rlr−j+x

′
t+1+jβ0+a

)
We note that deg(Nks1|l

p
1(ea)) ≤ deg(Dks1|l

p
1(ea)) with strict inequality unless ks1 = 1s. Further-

more, since by assumption for any t ∈ {p, . . . , T − 2}, s ∈ {1, . . . , T − 1− t} and y, ỹ ∈ Yp,

γ′0y + x′tβ0 ̸= γ′0ỹ + x′t+sβ0, D
ks1|l

p
1(ea) is a product of distinct irreducible polynomials in ea.

Consequently, standard results on partial fraction decompositions entail that there exists a

unique set of known coefficients (µ, λ0, λ1, . . . , λs−1) ∈ Rs+1 such that:

Nks1|l
p
1(ea)

Dks1|l
p
1(ea)

= µ+ λ0
1(

1 + e
∑p

r=1 γ0rlr+x
′
t+1β0+a

) +
s−1∑
j=1

λj
1

1 + e
∑j

r=1 γ0rkj+1−r+
∑p

r=j+1 γ0rlr−j+x′t+1+jβ0+a
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with µ = 0 unless ks1 = 1s. We can rewrite this in terms of transition probabilities as:

Nks1|l
p
1(ea)

Dks1|l
p
1(ea)

= µ+ λ0π
0|lp1
t (a, xt+1) +

s−1∑
j=1

λjπ
0|kj ,...,k1,lp−j

1
t+j (a, xt+1+j)

= µ+ λ0(1− l1)π
l1|lp1
t (a, xt+1) + λ0l1(1− π

l1|lp1
t (a, xt+1))+

s−1∑
j=1

λj(1− kj)π
kj |kj ,...,k1,lp−j

1
t+j (a, xt+1+j) +

s−1∑
j=1

λjkj(1− π
kj |kj ,...,k1,lp−j

1
t+j (a, xt+1+j))

This last result in conjunction with Theorem 4, implies that:

Π
ks1|l

p
1

t (y0, xt+s1 ) = µ

+ E
[
λ0(1− l1)ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 ) + λ0l1

(
1− ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 )
)

+
s−1∑
j=1

λj(1− kj)ϕ
kj |kj ,...,k1,lp−j

1
θ0

(Y t+j+1
it+j−(2p−1), x

t+s
1 )

+
s−1∑
j=1

λjkj

(
1− ϕ

kj |kj ,...,k1,lp−j
1

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )

)
|Y 0

i = y0, X t+s
i1 = xt+s1


which shows that Π

ks1|l
p
1

t (y0, xt+s1 ) is identified given that θ0 is identified by assumption.

Case 2: s ≥ p

Then,

Dks1|l
p
1(ea) =

(
1 + e

∑p
r=1 γ0rlr+x

′
t+1β0+a

) p−1∏
j=1

(
1 + e

∑j
r=1 γ0rkj+1−r+

∑p
r=j+1 γ0rlr−j+x

′
t+1+jβ0+a

)
×

s−1∏
j=p

(
1 + e

∑p
r=1 γ0rkj+1−r+x

′
t+1+jβ0+a

)

Nks1|l
p
1(ea) = ek1(

∑p
r=1 γ0rlr+x

′
t+1β0+a)

p−1∏
j=1

ekj+1(
∑j

r=1 γ0rkj+1−r+
∑p

r=j+1 γ0rlr−j+x
′
t+1+jβ0+a)

×
s−1∏
j=p

ekj+1(
∑p

r=1 γ0rkj+1−r+x
′
t+1+jβ0+a)

Invoking identical arguments as in the case s < p, there exists a unique set of known coeffi-
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cients (µ, λ0, λ1, . . . , λs−1) ∈ Rs+1 such that:

Π
ks1|l

p
1

t (y0, xt+s1 ) = µ

+ E
[
λ0(1− l1)ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 ) + λ0l1

(
1− ϕ

l1|lp1
θ0

(Y t+1
it−(2p−1), x

t+s
1 )
)

+

p−1∑
j=1

λj(1− kj)ϕ
kj |kj ,...,k1,lp−j

1
θ0

(Y t+j+1
it+j−(2p−1), x

t+s
1 )

+

p−1∑
j=1

λjkj

(
1− ϕ

kj |kj ,...,k1,lp−j
1

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )

)

+
s−1∑
j=p

λj(1− kj)ϕ
kj |kj ,...,kj+1−p

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )

+
s−1∑
j=p

λjkj

(
1− ϕ

kj |kj ,...,kj+1−p

θ0
(Y t+j+1

it+j−(2p−1), x
t+s
1 )
)
|Y 0

i = y0, X t+s
i1 = xt+s1


which again shows that Π

ks1|l
p
1

t (y0, xt+s1 ) is identified given that θ0 is identified by assumption.

This concludes the proof.

L Proof of Lemma 4

Let

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e

∑M
m=1(Ym,it+1−km)(

∑M
j=1 γmj(Yj,it−1−kj)−∆X′

m,it+1βm)

We verify the claim by direct calculation.

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= P (Yit = k|Yi0, Y t−1

i1 , Xi, Ai)

×
∑
l∈Y

P (Yit+1 = l|Yi0, Y t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=
M∏
m=1

ekm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

×
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

e
∑M

m=1(lm−km)(
∑M

j=1 γmj(Yj,it−1−kj)−∆X′
m,it+1βm)
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=
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

=
M∏
m=1

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

Now, noting that

∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i) =

M∏
m=1

(1 + e
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

we finally get

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

M∏
m=1

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

M∏
m=1

(1 + e
∑M

j=1 γmjYj,it−1+X
′
m,itβm+Am,i)

=
M∏
m=1

ekm(
∑M

j=1 γmjkj+X
′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

= π
k|k
t (Ai, Xi)

which concludes the proof.

M Proof of Lemma 5

By definition, for T ≥ 3, and for t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai)+∑
l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)|Yi0, Y s−1
i1 , Xi, Ai

]

=
M∏
m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)π

k|k
t (Ai, Xi)P (Yis = l|Yi0, Y s−1

i1 , Xi, Ai)

=
M∏
m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]] M∏
m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i

elm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i

=
M∏
m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i
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= π
k|k
t (Ai, Xi)

The first line follows from the measurability of the weight ω
k|k
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the

definition of µj,s(θ) and follows from the law of iterated expectations and Lemma 5. The

third line makes use of the definition of κ
k|k
m,t(θ) and ω

k|k
t,s,l(θ) and the penultime line uses

Appendix Lemma 9.

N Dynamic network formation with transitivity

Graham (2013) studies a variant of model (7) to describe network formation amongst groups

of 3 individuals. This is a panel data setting where a large sample of many such groups

and the evolution of their social ties are observed over T = 3 periods (4 counting the initial

condition). Interactions are assumed undirected and modelled at the dyad level as:

Dijt = 1
{
γ0Dijt−1 + δ0Rijt−1 + Aij − ϵijt ≥ 0

}
t = 1, . . . , T

Rijt−1 = Dikt−1Djkt−1

(12)

where i, j, k denote the 3 different agents and Dijt ∈ {0, 1} encodes the presence or absence

of a link between agent i and agent j at time t. The network D0 ∈ {0, 1}3 forms the ini-

tial condition. The parameter γ0 captures state dependence while δ0 captures transitivity

in relationships, i.e the effect of sharing friends in common on the propensity to establish

friendships. Finally, Aij is an unrestricted dyad level fixed effect that could potentiall cap-

ture unobserved homophily and ϵijt is a standard logistic shock, iid over time and individuals.

While Graham (2013) establishes identification of (γ0, δ0) for T = 3 via a conditional like-

lihood approach in the spirit of Chamberlain (1985), one limitation of the model is the

absence of other covariates, in particular time-specific effects. Controlling for such effects

can be essential to adequately capture important variation in social dynamics: think about

the persistent impact of Covid-19 on all types of social interactions. A relevant extension is
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thus:

Dijt = 1
{
γ0Dijt−1 + δ0Dikt−1Djkt−1 +X ′

ijtβ0 + Aij − ϵijt ≥ 0
}

t = 1, . . . , T

Rijt−1 = Dikt−1Djkt−1

(13)

Letting D = {0, 1}3 denote the support of the network Dt = (Dijt, Dikt, Djkt), it is straight-

forward to see that the results developed for the VAR(1) case can be repurposed to suit

model (13) . For T = 3, an adaptation of Lemma 4 yields 8 possible transition functions

given by:

ϕ
d|d
θ (D3, D2, D1, X) = 1{D2 = d} exp

∑
i<j

(Dij3 − dij2)[γ(Dij1 − dij2)−∆Rij1δ −∆X ′
ij2β]

 , d ∈ D

An adaptation of Lemma 5 implies that we can construct another 8 transition functions given

by

ζ
d|d
θ (D3, D2, D1, D0, X) = 1{D1 = d}+

∑
d′∈D\{d}

ω
d|d
2,1,d′(θ)1{D1 = l}ϕd|dθ (D3, D2, D2, X), d ∈ D

where

µij,1(θ) = γDij0 + δRij0 +X ′
ij1β

κ
d|d
ij,2(θ) = γdij + δrij +X ′

ij3β

ω
d|d
2,1,d′(θ) = 1− e

∑
i<j(d

′
ij−dij)

[
κ
d|d
ij,2(θ)−µij,1(θ)

]

Therefore, for T = 3, 8 moment functions that all meaningfully depend on the model param-

eter are:

ψ
d|d
θ (D3, D2, D1, D0, X) = ϕ

d|d
θ (D3, D2, D1, X)− ζ

d|d
θ (D3, D2, D1, D0, X), d ∈ D

Their validity, in the sense of verifying equation (1), follows from the law of iterated expec-

tations.
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O Proof of Lemma 6

Let

ϕ
k|k
θ (Y t+1

it−1, Xi) = 1{Yit = k}e
∑

c∈Y\{k} 1{Yit+1=c}(
∑

j∈Y (γcj−γkj)1(Yit−1=j)+γkk−γck+∆X′
ikt+1βk−∆X′

ict+1βc)

We verify the claim by direct computation. We have:

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi

]
= P (Yit = k|Y 0

i , Y
t−1
i1 , Xi, Ai)×∑

l∈Y

P (Yit+1 = l|Y 0
i , Y

t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X
′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×

∑
l∈Y

eγlk+X
′
ilt+1βl+Ail

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

ϕ
k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X
′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×

 eγkk+X
′
ikt+1βk+Aik

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

+
∑

l∈Y\{k}

eγlk+X
′
ilt+1βl+Ail

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

e(
∑C

j=0(γlj−γkj)1(Yit−1=j)+γkk−γlk+∆X′
ikt+1βk−∆X′

ilt+1βl)


=

e
∑C

c=0 γkc1(Yit−1=c)+X
′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

× eγkk+X
′
ikt+1βk+Aik

C∑
j=0

eγjk+X
′
ijt+1βj+Aij

+
eγkk+X

′
ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×
∑

l∈Y\{k}

1
C∑
j=0

eγjk+X
′
ijt+1βj+Aij

e
∑C

j=0 γlj1(Yit−1=j)+X
′
iltβl+Ail

=
eγkk+X

′
ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

1
C∑
j=0

eγjk+X
′
ijt+1βj+Aij

∑
l∈Y

e
∑C

j=0 γlj1(Yit−1=j)+X
′
iltβl+Ail

=
eγkk+X

′
ikt+1βk+Aik

C∑
j=0

eγjk+X
′
ijt+1βj+Aij
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= π
k|k
t (Ai, Xi)

which concludes the proof.

P Proof of Lemma 7

By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1,

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = 0|Yi0, Y s−1

i1 , Xi, Ai)

+
∑

l∈Y\{0}

ω
0|0
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
0|0
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]

=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
C∑
l=1

ω
0|0
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai
]
π
0|0
t (Ai, Xi)

=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
C∑
l=1

(
1− e(κ

0|0
l,t (θ)−µl,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

=
1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

= π
0|0
t (Ai, Xi)

The first line follows from the measurability of the weight ω
0|0
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the

definition of µc,s(θ) and follows from the law of iterated expectations and Lemma 6. The third

line makes use of the definition of κ
0|0
c,t (θ), ω

0|0
t,s,l(θ) and the normalization γc0 = γ0c = 0, A0c = 0

for all c ∈ Y . The penultime line uses Appendix Lemma 8.

Likewise, for all k ∈ Y \ {0},

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai)

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
k|k
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
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=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai
]
π
k|k
t (Ai, Xi)

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+

(
1− e−κ

k|k
k,t (θ)+µk,s(θ)

)
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

+
C∑
l=1
l ̸=k

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eκ

k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

= π
k|k
t (Ai, Xi)

The first line follows from the measurability of the weight ω
k|k
t,s,l(θ) with respect to the

conditioning set and the linearity of conditional expectations. The second line uses the

definition of µk,s(θ) and follows from the law of iterated expectations and Lemma 6. The

third line makes use of the definition of κ
k|k
c,t (θ) and ω

k|k
t,s,l(θ). The fourth line uses the fact

that κ
k|k
0,t (θ) = µ0,s(θ) = 0 due to the normalization γc0 = γ0c = 0, A0c = 0 for all c ∈ Y . The

penultime line uses Appendix Lemma 8.

Q Proof of Theorem 2

In what follows, we will drop the cross-sectional subscript i to economize on space. To avoid

excessive repetition, we will detail the argument for the initial condition Y0 = 0. A set of

completely symmetric arguments will deliver the result for Y0 = 1 and can be provided

upon request. For conciseness, we will further omit the conditioning on the initial condition

Y0 = 0 in conditional expectations.

A) Preliminary calculations

The conditional density of history (Y1, Y2, Y3) of the AR(1) model given initial condition Y0,
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regressors X and fixed effect A is f(Y1, Y2, Y3|Y0, X,A; θ) =
3∏
t=1

eYt(γYt−1+X′
tβ+A)(

1+eγYt−1+X′
tβ+A

) . This implies

ln f(Y1, Y2, Y3|Y0, X,A; θ) =
3∑
t=1

Yt(γYt−1 +X ′
tβ + A)−

3∑
t=1

Yt−1 ln
(
1 + eγ+X

′
tβ+A

)
−

3∑
t=1

(1− Yt−1) ln
(
1 + eX

′
tβ+A

)
and hence

∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)
∂γ

=
3∑
t=1

Yt

(
Yt−1 −

eγ+X
′
tβ+A

1 + eγ+X
′
tβ+A

)
∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)

∂β
=

3∑
t=1

Xt

(
Yt − Yt−1

eγ+X
′
tβ+A

1 + eγ+X
′
tβ+A

− (1− Yt−1)
eX

′
tβ+A

1 + eX
′
tβ+A

)

Our candidate for the efficient score is the efficient moment based on the conditional

moment restriction: E
[
ψθ(Y

3
1 , Y

1
0 , X)|Y0 = 0, X

]
= 0. By Chamberlain (1987), it is given by,

ψeffθ (Y 3
1 , X) = −Ω(X)ψθ(Y

3
1 , Y

1
0 , X)

where Ω(X) = D(X)′Σ(X)−1 (recall that we are omitting the dependence on the initial

condition Y0 = 0 here). The following expressions for D(X),Σ(X),Ω(X) are useful for the

derivations ahead:

D11(X) = eX
′
21β+γP101(X)

D21(X) = −eX′
13β−γP011(X)

D1j(X) = X23,j−1e
X′

23βP001(X) +X21,j−1e
X′

21β+γP101(X) +X31,j−1e
X′

31βP100(X), j = 2, . . . , K + 1

D2j(X) = X32,j−1e
X′

32βP110(X) +X12,j−1e
X′

12βP010(X) +X13,j−1e
X′

13β−γP011(X), j = 2, . . . , K + 1

Σ11(X) = (eX
′
23β − 1)2P001(X) + e2X

′
21β+2γP101(X) + e2X

′
31βP100(X) + P01(X)

Σ22(X) = (eX
′
32β − 1)2P110(X) + e2X

′
12βP010(X) + e2X

′
13β−2γP011(X) + P10(X)

Σ12(X) = Σ21(X) = −
(
eX

′
21β+γP101(X) + eX

′
31βP100(X) + eX

′
12βP010(X) + eX

′
13β−γP011(X)

)
det
(
Σ(X)

)
= Σ11(X)Σ22(X)− Σ12(X)2

Ωj1(X) =
1

det
(
Σ(X)

) (D1j(X)Σ22(X)−D2j(X)Σ12(X)
)
, j = 1, . . . , K + 1
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Ωj2(X) =
1

det
(
Σ(X)

) (−D1j(X)Σ12(X) +D2j(X)Σ11(X)
)
, j = 1, . . . , K + 1

were I use the shorthand Py1...yn(X) = P (Y1 = y1, . . . , Yn = yn|Y0 = 0, X)

B) Scores and nonparametric tangent set

With T = 3, the conditional likelihood of history (Y1, Y2, Y3) given X = x, Y0 = y0 writes:

L(θ) =
∫
f(Y1, Y2, Y3|y0, x, a; θ)π(a|y0, x)da

where π(.|y0, x) denotes the conditional density of A given X = x, Y0 = y0. Consider a scalar

parametric submodel for the heterogeneity distribution π(.|y0, x; η) such that π(.|y0, x) =

π(.|y0, x; η0). Then, the conditional likelihood of the parametric submodel is

L(θ, η) =
∫
f(Y1, Y2, Y3|y0, x, a; θ)π(a|y0, x; η)da

Define

Cy1y2y3(xt) = E

[
eγ+x

′
tβ+A

1 + eγ+x
′
tβ+A

|Y1 = y1, Y2 = y2, Y3 = y3, X = x

]

By1y2y3(xt) = E

[
ex

′
tβ+A

1 + ex
′
tβ+A

|Y1 = y1, Y2 = y2, Y3 = y3, X = x

]

Careful bookkeeping yield the following scores for γ and β

Sγ =
∂ lnL(θ, η)

∂γ
= E

[
∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)

∂γ
|Y1, Y2, Y3, X = x

]
=
(
1− C111(x2) + 1− C111(x3)

)
Y1Y2Y3 + (1− C110(x2)− C110(x3))Y1Y2(1− Y3)

− C101(x2)Y1(1− Y2)Y3 − C100(x2)Y1(1− Y2)(1− Y3)

+ (1− C011(x3))(1− Y1)Y2Y3 − C010(x3)(1− Y1)Y2(1− Y3)

(14)

and

Sβ =
∂ lnL(θ, η)

∂β
= E

[
∂ ln f(Y1, Y2, Y3|Y0, X,A; θ)

∂β
|Y1, Y2, Y3, X = x

]
=
(
x1(1−B111(x1)) + x2(1− C111(x2)) + x3(1− C111(x3))

)
Y1Y2Y3

+
(
x1(1−B110(x1)) + x2(1− C110(x2))− x3C110(x3)

)
Y1Y2(1− Y3)
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+
(
x1(1−B101(x1))− x2C101(x2) + x3(1−B101(x3))

)
Y1(1− Y2)Y3

+
(
x1(1−B100(x1))− x2C100(x2)− x3B100(x3)

)
Y1(1− Y2)(1− Y3)

+
(
−x1B011(x1) + x2(1−B011(x2)) + x3(1− C011(x3))

)
(1− Y1)Y2Y3

+
(
−x1B010(x1) + x2(1−B010(x2))− x3C010(x3)

)
(1− Y1)Y2(1− Y3)

+
(
−x1B001(x1)− x2B001(x2) + x3(1−B001(x3))

)
(1− Y1)(1− Y2)Y3

+
(
−x1B000(x1)− x2B000(x2)− x3B000(x3)

)
(1− Y1)(1− Y2)(1− Y3)

The score for the nuisance parameter is

Sη =
∂ lnL(θ, η0)

∂η
= E

[
∂ ln π(A|y0, x; η0)

∂η
|Y1, Y2, Y3, X = x

]
Following Hahn (2001), this implies that the nonparametric tangent set is given by

T =
{
E[K(A, x)|Y1, Y2, Y3, x] such that E[K(A, x)|x] = 0

}
To prove that ψeffθ is semiparametrically efficient, we will verify the conditions for an appli-

cation of Theorem 3.2 in Newey (1990). Noting that L(θ, η) is differentiable in θ, that T is

linear, and that by Assumption 1, E
[
ψeffθ (Y 3

1 , X)ψeffθ (Y 3
1 , X)′

]
= E

[
D(X)Σ(X)−1D(X)′

]
is

non singular, all that remains to check are: i) ψeffθ (Y 3
1 , X) ∈ T ⊥ and ii) Sθ−ψeffθ (Y 3

1 , X) ∈ T .

C) Verification of condition i) ψeff
θ (Y3

1,X) ∈ T ⊥

To verify condition i), let us characterize the orthocomplement of T which will also be useful

to verify condition ii). By definition, any g(Y1, Y2, Y3, x) ∈ T ⊥ is such that for any element

of T , E[K(A, x)|Y1, Y2, Y3, x], we have

0 = E
[
g(Y1, Y2, Y3, x)E[K(A, x)|Y1, Y2, Y3, x]|x

]
=

∫
K(a, x)E

[
g(Y1, Y2, Y3, x)|x, a

]
π(a|x)da

because this equality must be valid for any K(a, x) verifying E[K(A, x)|x] = 0, it must be the

case that V
(
E
[
g(Y1, Y2, Y3, x)|x,A

]
|x
)
= 0 or equivalently that E

[
g(Y1, Y2, Y3, x)|x,A

]
=

E
[
g(Y1, Y2, Y3, x)|x

]
. Conversely, this short calculation makes it clear that any g function
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such that E
[
g(Y1, Y2, Y3, x)|x,A

]
is constant will be an element of T ⊥. We conclude that,

T ⊥ = {g(Y1, Y2, Y3, x) |E
[
g(Y1, Y2, Y3, x)− E

[
g(Y1, Y2, Y3, x)|x

]
|x,A

]
= 0} = R+ T ⊥

∗

T ⊥
∗ = {g∗(Y1, Y2, Y3, x) |E

[
g∗(Y1, Y2, Y3, x)|x,A

]
= 0}

At this stage, an important observation is that T ⊥
∗ coincides with the set of valid moment

functions in the AR(1) model with T = 3. By Theorem 1, this is a 2-dimensional space when

T = 3 with basis elements ψ
0|0
θ (Y 3

i1, Y
1
i0, Xi), ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi). As a result, we further conclude

that T ⊥
∗ = span

(
{ψ0|0

θ (Y 3
i1, Y

1
i0, Xi), ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi)}

)
. Hence, ψeffθ (Y 3

1 , X) ∈ T ⊥
∗ since it

is a linear combination of ψ
0|0
θ (Y 3

i1, Y
1
i0, Xi) and ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi). Finally since T ⊥

∗ ⊂ T ⊥,

ψeffθ (Y 3
1 , X) ∈ T ⊥.

D) Verification of condition ii) Sθ − ψeffθ (Y 3
1 , x) ∈ T

To check condition ii) Sθ−ψeffθ (Y 3
1 , x) ∈ T , we will verify the equivalent condition that for any

element g ∈ T ⊥, E
[(
Sθ − ψeffθ (Y 3

1 , x)
)
g(Y1, Y2, Y3, x)|x

]
= 0. Given our characterization of

T ⊥, it is equivalent to verify that ∀k ∈ {0, 1}, E
[(
Sθ − ψeffθ (Y 3

1 , x)
)
ψ
k|k
θ (Y 3

1 , Y
1
0 , x)|x

]
= 0

D)1) Sγ − ψeffγ (Y 3
1 , x) ⊥ ψ

0|0
θ (Y 3

1 , Y
1
0 , x)

Let ∆
0|0
γ = (Sγ − ψeffγ (Y 3

1 , Y
1
i0, x))ψ

0|0
θ (Y 3

1 , Y
1
0 , x). It is tedious but straightforward to show

that

∆0|0
γ = ∆

0|0
γ,1 +∆

0|0
γ,2 +∆

0|0
γ,3 +∆

0|0
γ,4 +∆

0|0
γ,5

∆
0|0
γ,1 = (1− C101(x2))e

x′21β+γY1(1− Y2)Y3 − C100(x2)e
x′31βY1(1− Y2)(1− Y3)

∆
0|0
γ,2 = −(1− C011(x3))(1− Y1)Y2Y3 + C010(x3)(1− Y1)Y2(1− Y3)

∆
0|0
γ,3 = Ω11(x)(e

x′23β − 1)2(1− Y1)(1− Y2)Y3 + Ω11(x)e
2x′21β+2γY1(1− Y2)Y3

+ Ω11(x)e
2X′

31βY1(1− Y2)(1− Y3) + Ω11(x)(1− Y1)Y2

∆
0|0
γ,4 = −Ω12(x)e

x′21β+γY1(1− Y2)Y3 − Ω12(x)e
x′31βY1(1− Y2)(1− Y3)

− Ω12(x)e
x′12β(1− Y1)Y2(1− Y3)− Ω12(x)e

x′13β−γ(1− Y1)Y2Y3

∆
0|0
γ,5 = −eX′

21β+γY1(1− Y2)Y3
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We then note that

E
[
∆

0|0
γ,1|x

]
=

∫
1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

ex
′
21β+γπ(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

1

1 + ex
′
3β+a

ex
′
31βπ(a|x)da

=

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

= 0

and by a similar calculation E
[
∆

0|0
γ,2|x

]
= 0. Next, we immediately have

E
[
∆

0|0
γ,3|x

]
= Ω11(x)Σ11(x)

E
[
∆

0|0
γ,4|x

]
= Ω12(x)Σ12(x)

E
[
∆

0|0
γ,5|x

]
= −eX′

21β+γP101(x)

and hence,

∆0|0
γ = Ω11(x)Σ11(X) + Ω12(x)Σ12(x)− ex

′
21β+γP101(x) = D11(x)−D11(x) = 0

D)2) Sγ − ψeffγ (Y 3
1 , x) ⊥ ψ

1|1
θ (Y 3

1 , Y
1
0 , x)

Let ∆
1|1
γ = (Sγ − ψeffγ (Y 3

1 , Y
1
i0, x))ψ

1|1
θ (Y 3

1 , Y
1
0 , x). It can be decomposed as follows

∆1|1
γ = ∆

1|1
γ,1 +∆

1|1
γ,2 +∆

1|1
γ,3 +∆

1|1
γ,4 +∆

1|1
γ,5

∆
1|1
γ,1 = −(eX

′
32β − 1)C1,1,0(x2)Y1Y2(1− Y3) + C1,0,1(x2)Y1(1− Y2)Y3 + C1,0,0(x2)Y1(1− Y2)(1− Y3)

∆
1|1
γ,2 = +(eX

′
32β − 1)(1− C1,1,0(x3))Y1Y2(1− Y3)− ex

′
12βC0,1,0(x3)(1− Y1)Y2(1− Y3)

− ex
′
13β−γC0,1,1(x3)(1− Y1)Y2Y3

∆
1|1
γ,3 = −Ω11(x)e

x′21β+γY1(1− Y2)Y3 − Ω11(x)e
x′31βY1(1− Y2)(1− Y3)

− Ω11(x)e
X′

12β(1− Y1)Y2(1− Y3)− Ω11(x)e
x′13β−γ(1− Y1)Y2Y3

∆
1|1
γ,4 = +Ω12(x)(e

X′
32β − 1)2Y1Y2(1− Y3) + Ω12(x)e

2x′12β(1− Y1)Y2(1− Y3)

+ Ω12(x)e
2x′13β−2γ(1− Y1)Y2Y3 + Ω12(x)Y1(1− Y2)
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∆
1|1
γ,5 = ex

′
13β−γ(1− Y1)Y2Y3

First, we have

E
[
∆

1|1
γ,1|x

]
= −

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

(ex
′
32β − 1)π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

π(a|x)da

= −
∫

1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

π(a|x)da

= +

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

= E[Y1Y2(1− Y3)|Y0 = 0, x]

By a very similar calculation, E
[
∆

1|1
γ,2|x

]
= −E[Y1Y2(1− Y3)|Y0 = 0, x]. Then,

E
[
∆

1|1
γ,3|x

]
= Ω11(x)Σ12(x)

E
[
∆

1|1
γ,4|x

]
= Ω12(x)Σ22(x)

E
[
∆

1|1
γ,5|x

]
= +ex

′
13β−γP011(x)

It follows that

E
[
∆1|1
γ |x

]
= Ω11(x)Σ12(x) + Ω12(x)Σ22(x) + ex

′
13β−γP011(x) = D21(x)−D21(x) = 0

D)3) Sβ − ψeffβ (Y 3
1 , x) ⊥ ψ

0|0
θ (Y 3

1 , Y
1
0 , x)

Fix j ∈ {2, . . . , K + 1}. Let ∆
0|0
βj−1

= (Sβj−1
− ψeffβj−1

(Y 3
1 , Y

1
i0, x))ψ

0|0
θ (Y 3

1 , Y
1
0 , x). Tedious

calculations and rearrangements lead to the following decomposition:

∆
0|0
βj−1

= ∆
0|0
βj−1,1

+∆
0|0
βj−1,2

+∆
0|0
βj−1

(x1) + ∆
0|0
βj−1

(x2) + ∆
0|0
βj−1

(x3)
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where

∆
0|0
βj−1

(x1) = ∆
0|0
βj−1,1

(x1) + ∆
0|0
βj−1,2

(x1)

∆
0|0
βj−1,1

(x1) = −(ex
′
23β − 1)x1,j−1B001(x1)(1− Y1)(1− Y2)Y3 − ex

′
21β+γx1,j−1B101(x1)Y1(1− Y2)Y3

− ex
′
31βx1,j−1B100(x1)Y1(1− Y2)(1− Y3)

+ x1,j−1B011(x1)(1− Y1)Y2Y3 + x1,j−1B010(x1)(1− Y1)Y2(1− Y3)

∆
0|0
βj−1,2

(x1) = ex
′
21β+γx1,j−1(Y1(1− Y2)Y3 + ex

′
31βx1,j−1Y1(1− Y2)(1− Y3)

and

∆
0|0
βj−1

(x2) = ∆
0|0
βj−1,1

(x2) + ∆
0|0
βj−1,2

(x2) + ∆
0|0
βj−1,3

(x2)

∆
0|0
βj−1,1

(x2) = ex
′
23βx2,j−1(1−B001(x2))(1− Y1)(1− Y2)Y3 + x2,j−1B001(x2)(1− Y1)(1− Y2)Y3

− x2,j−1(1−B011(x2))(1− Y1)Y2Y3 − x2,j−1(1−B010(x2))(1− Y1)Y2(1− Y3)

∆
0|0
βj−1,2

(x2) = +ex
′
21β+γx2,j−1(1− C101(x2))Y1(1− Y2)Y3 − ex

′
31βx2,j−1C100(x2)Y1(1− Y2)(1− Y3)

∆
0|0
βj−1,3

(x2) = −ex′23βx2,j−1(1− Y1)(1− Y2)Y3 − ex
′
21β+γx2,j−1Y1(1− Y2)Y3

and

∆
0|0
βj−1

(x3) = ∆
0|0
βj−1,1

(x3) + ∆
0|0
βj−1,2

(x3) + ∆
0|0
βj−1,3

(x3)

∆
0|0
βj−1,1

(x3) = −(ex
′
23β − 1)x3,j−1B001(x3)(1− Y1)(1− Y2)Y3 − x3,j−1(1− Y1)(1− Y2)Y3

+ ex
′
21β+γx3,j−1(1−B101(x3))Y1(1− Y2)Y3 + ex

′
31βx3,j−1(1−B100(x3))Y1(1− Y2)(1− Y3)

∆
0|0
βj−1,2

(x3) = −x3,j−1(1− C011(x3))(1− Y1)Y2Y3 + x3,j−1C010(x3)(1− Y1)Y2(1− Y3)

∆
0|0
βj−1,3

(x3) = ex
′
23βx3,j−1(1− Y1)(1− Y2)Y3 − ex

′
31βx3,j−1Y1(1− Y2)(1− Y3)

and last

∆
0|0
βj−1,1

= +Ωj1(x)(e
x′23β − 1)2(1− Y1)(1− Y2)Y3 + Ωj1(x)e

2x′21β+2γY1(1− Y2)Y3

+ Ωj1(x)e
2x′31βY1(1− Y2)(1− Y3) + Ωj1(x)(1− Y1)Y2

∆
0|0
βj−1,2

= −Ωj2(x)e
x′21β+γY1(1− Y2)Y3 − Ωj2(x)e

x′31βY1(1− Y2)(1− Y3)

− Ωj2(x)e
x′12β(1− Y1)Y2(1− Y3)− Ωj2(x)e

x′13β−γ(1− Y1)Y2Y3
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Starting first with the terms in “x1”, we have:

1

x1,j−1

E[∆0|0
βj−1,1

(x1)|x] = E

[
ex

′
1β+A

1 + ex
′
1β+A

E
[
−ψ0|0

θ (Y 3
1 , Y

1
0 , x)|x,A

]
|x

]
= 0

E[∆0|0
βj−1,2

(x1)|x] = ex
′
21β+γx1,j−1P101(x) + ex

′
31βx1,j−1P100(x)

Next, for the terms in “x2”, we have:

1

x2,j−1

E
[
∆β,1(x2)|x

]
=

∫
1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

1

1 + ex
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

ex
′
23βπ(a|x)da

+

∫
ex

′
2β+a

1 + ex
′
2β+a

1

1 + ex
′
1β+a

1

1 + ex
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

−
∫

1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

ex
′
2β+a

1 + ex
′
2β+a

π(a|x)da

=

∫
1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

ex
′
2β+a

1 + ex
′
2β+a

π(a|x)da

−
∫

1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

ex
′
2β+a

1 + ex
′
2β+a

π(a|x)da

= 0

1

x2,j−1

E
[
∆β,2(x2)|x

]
=

∫
1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

ex
′
21β+γπ(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

1

1 + ex
′
3β+a

ex
′
31βπ(a|x)da

=

∫
1

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

−
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

ex
′
3β+a

1 + ex
′
3β+a

π(a|x)da

= 0

E
[
∆

0|0
βj−1,3

(x2)|x
]
= −ex′23βx2,j−1P001(x)− ex

′
21β+γx2,j−1P101(x)

By the same token, for the terms in “x3”, one arrives at E
[
∆

0|0
βj−1,1

(x3)|x
]

=

E
[
∆

0|0
βj−1,2

(x3)|x
]
= 0 and

E
[
∆

0|0
βj−1,1

(x3)|x
]
= E

[
∆

0|0
βj−1,2

(x3)|x
]
= 0
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E
[
∆

0|0
βj−1,3

(x3)|x
]
= ex

′
23βx3,j−1P001(x)− ex

′
31βx3,j−1P100(x)

Finally, E[∆0|0
βj−1,1

|x] = Ωj,1(x)Σ11(x),E[∆0|0
βj−1,2

|x] = Ωj,2(x)Σ12(x). Collecting terms, we get

E
[
∆

0|0
βj−1

|x
]
= ex

′
21β+γx1,j−1P101(x) + ex

′
31βx1,j−1P100(x)− ex

′
23βx2,j−1P001(x)− ex

′
21β+γx2,j−1P101(x)

ex
′
23βx3,j−1P001(x)− ex

′
31βx3,j−1P100(x) + Ωj1(x)Σ11(x) + Ωj2(x)Σ12(x)

= −D1j(x) +D1j(x)

= 0

This is of course valid for all slope parameters βj and hence Sβ−ψeffβ (Y 3
1 , x) ⊥ ψ

0|0
θ (Y 3

1 , Y
1
0 , x)

D)4) Sβ − ψeffβ (Y 3
1 , x) ⊥ ψ

1|1
θ (Y 3

1 , Y
1
0 , x)

Fix j ∈ {2, . . . , K + 1}. Let ∆
1|1
βj−1

= (Sβj−1
− ψeffβj−1

(Y 3
1 , Y

1
i0, x))ψ

1|1
θ (Y 3

1 , Y
1
0 , x). A last set of

lengthy calculations and rearrangements lead to the following decomposition:

∆
1|1
βj−1

= ∆
1|1
βj−1,1

+∆
1|1
βj−1,2

+∆
1|1
βj−1

(x1) + ∆
1|1
βj−1

(x2) + ∆
1|1
βj−1

(x3)

where

∆
1|1
βj−1

(x1) = ∆
1|1
βj−1,1

(x1) + ∆
1|1
βj−1,2

(x1)

∆
1|1
βj−1,1

(x1) = +(ex
′
32β − 1)x1,j−1(1−B110(x1))Y1Y2(1− Y3) + ex

′
12βx1,j−1(1−B010(x1))(1− Y1)Y2(1− Y3)

+ ex
′
13β−γx1,j−1(1−B011(x1))(1− Y1)Y2Y3

− x1,j−1(1−B101(x1))Y1(1− Y2)Y3 − x1,j−1(1−B100(x1))Y1(1− Y2)(1− Y3)

∆
1|1
βj−1,2

(x1) = −ex′12βx1,j−1(1− Y1)Y2(1− Y3)− ex
′
13β−γx1,j−1(1− Y1)Y2Y3

and

∆
1|1
βj−1

(x2) = ∆
1|1
βj−1,1

(x2) + ∆
1|1
βj−1,2

(x2) + ∆
1|1
βj−1,3

(x2)

∆
1|1
βj−1,1

(x2) = −ex′32βx2,j−1C110(x2)Y1Y2(1− Y3)− x2,j−1(1− C110(x2))Y1Y2(1− Y3)

+ x2,j−1C101(x2)Y1(1− Y2)Y3 + x2,j−1C100(x2)Y1(1− Y2)(1− Y3)

∆
1|1
βj−1,2

(x2) = −ex′12βx2,j−1B010(x2)(1− Y1)Y2(1− Y3) + ex
′
13β−γx2,j−1(1−B011(x2))(1− Y1)Y2Y3

∆
1|1
βj−1,3

(x2) = ex
′
32βx2,j−1Y1Y2(1− Y3) + ex

′
12βx2,j−1(1− Y1)Y2(1− Y3)
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and

∆
1|1
βj−1

(x3) = ∆
1|1
βj−1,1

(x3) + ∆
1|1
βj−1,2

(x3) + ∆
1|1
βj−1,3

(x3)

∆
1|1
βj−1,1

(x3) = +ex
′
32βx3,j−1(1− C110(x3))Y1Y2(1− Y3) + x3,j−1C110(x3)Y1Y2(1− Y3)

− ex
′
12βx3,j−1C010(x3)(1− Y1)Y2(1− Y3)− ex

′
13β−γx3,j−1C011(x3)(1− Y1)Y2Y3

∆
1|1
βj−1,2

(x3) = −x3,j−1(1−B101(x3))Y1(1− Y2)Y3 + x3,j−1B100(x3)Y1(1− Y2)(1− Y3)

∆
1|1
βj−1,3

(x3) = ex
′
13β−γx3,j−1(1− Y1)Y2Y3 − ex

′
32βx3,j−1Y1Y2(1− Y3)

and last

∆
1|1
βj−1,1

= −Ωj1(x)e
x′21β+γY1(1− Y2)Y3 − Ωj1(x)e

x′31βY1(1− Y2)(1− Y3)

− Ωj1(x)e
x′12β(1− Y1)Y2(1− Y3)− Ωj1(x)e

x′13β−γ(1− Y1)Y2Y3

∆
1|1
βj−1,2

= +Ωj2(x)(e
x′32β − 1)2Y1Y2(1− Y3) + Ωj2(x)e

2x′12β(1− Y1)Y2(1− Y3)

+ Ωj2(x)e
2x′13β−2γ(1− Y1)Y2Y3 + Ωj2(x)Y1(1− Y2)

Starting first with the terms in “x1”, we have:

1

x1,j−1

E
[
∆

1|1
βj−1,1

(x1)|x
]
= E

[
1

1 + ex
′
1β+A

E
[
ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi)|x,A

]
|x
]
= 0

E
[
∆

1|1
βj−1,2

(x1)|x
]
= −ex′12βx1,j−1P010(x)− ex

′
13β−γx1,j−1P011(x)

For the terms in “x2”

1

x2,j−1

E
[
∆

1|1
βj−1,1

(x2)|x
]
= −

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

ex
′
32βπ(a|x)da

−
∫

1

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

π(a|x)da

= −
∫

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
eγ+x

′
2β+a

1 + eγ+x
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

1

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

π(a|x)da

= 0

1

x2,j−1

E
[
∆

1|1
βj−1,2

(x2)|x
]
= −

∫
ex

′
2β+a

1 + ex
′
2β+a

1

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

ex
′
12βπ(a|x)da
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+

∫
1

1 + ex
′
2β+a

1

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

eγ+x
′
3β+a

1 + eγ+x
′
3β+a

ex
′
13β−γπ(a|x)da

= −
∫

1

1 + ex
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

+

∫
1

1 + ex
′
2β+a

ex
′
1β+a

1 + ex
′
1β+a

eγ+x
′
2β+a

1 + eγ+x
′
2β+a

1

1 + eγ+x
′
3β+a

π(a|x)da

= 0

E
[
∆

1|1
βj−1,3

(x2)|x
]
= ex

′
32βx2,j−1P110(x) + ex

′
12βx2,j−1P010(x)

Similar calculations for the terms in “x3” yield E
[
∆

1|1
βj−1,1

(x3)|x
]
= E

[
∆

1|1
βj−1,2

(x3)|x
]
= 0

and E
[
∆

1|1
βj−1,3

(x3)|x
]
= ex

′
13β−γx3,j−1P011(x)− ex

′
32βx3,j−1P110(x). Finally,

E
[
∆

1|1
βj−1,1

|x
]
= −Ωj1(x)e

x′21β+γP101(x)− Ωj1(x)e
x′31βP100(x)

− Ωj1(x)e
x′12βP010(x)− Ωj1(x)e

x′13β−γP011(x)

= Ωj1(x)Σ12(x)

E
[
∆

1|1
βj−1,2

|x
]
= +Ωj2(x)(e

x′32β − 1)2P110(x) + Ωj2(x)e
2x′12βP010(x)

+ Ωj2(x)e
2x′13β−2γP011(x) + Ωj2(x)P10(x)

= Ωj2(x)Σ22(x)

Putting the different pieces together, we ultimately obtain

E
[
∆

1|1
βj−1

|x
]
= −ex′12βx1,j−1P010(x)− ex

′
13β−γx1,j−1P011(x)

+ ex
′
32βx2,j−1P110(x) + ex

′
12βx2,j−1P010(x)

+ ex
′
13β−γx3,j−1P011(x)− ex

′
32βx3,j−1P110(x)

+ Ωj1(x)Σ12(x) + Ωj2(x)Σ22(x)

= −D2j(x) +D2j(x)

= 0

This is of course valid for all slope parameters βj and hence Sβ−ψeffβ (Y 3
1 , x) ⊥ ψ

1|1
θ (Y 3

1 , Y
1
0 , x)

E) Conclusion

Having verified all the conditions of Theorem 3.2 in Newey (1990) for the initial condition Y0 =
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0, we conclude that in that case ψeffθ (Y 3
1 , X) is the efficient score of the AR(1) model. The

semiparametric efficiency bound is given by E
[
D(X)′Σ(X)−1D(X)

]−1
. Symmetric results

can be shown to hold for the case Y0 = 1.
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