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Abstract

We study identification in a binary choice panel data model with a single predeter-
mined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged
outcomes and covariates). The choice model is indexed by a scalar parameter θ, whereas
the distribution of unit-specific heterogeneity, as well as the feedback process that maps
lagged outcomes into future covariate realizations, are left unrestricted. We provide a
simple condition under which θ is never point-identified, no matter the number of time
periods available. This condition is satisfied in most models, including the logit one.
We also characterize the identified set of θ and show how to compute it using linear
programming techniques. While θ is not generally point-identified, its identified set is
informative in the examples we analyze numerically, suggesting that meaningful learn-
ing about θ may be possible even in short panels with feedback. As a complement, we
report calculations of identified sets for an average partial effect, and find informative
sets in this case as well.
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1 Introduction

Empirical researchers utilizing panel data generally maintain the assumption that covariates

are strictly exogenous: realized values of past, current, and future explanatory variables are

independent of the time-varying structural disturbances or “shocks”.1 In many settings this

assumption is unrealistic. If the covariate is a policy, choice or dynamic state variable, then

agents may adjust its level in response to past shocks (as when, for example, a firm adjusts

its current capital expenditures in response to past productivity shocks).

When strict exogeneity is untenable, sequential exogeneity – sometimes called predeter-

minedness – may be palatable. A predetermined covariate varies independently of current

and future time-varying shocks, but general feedback, or dependence on past shocks, is al-

lowed. Assumptions of this type play an important role in, for example, production function

estimation (Olley and Pakes, 1996, Blundell and Bond, 2000).

In two seminal papers, Arellano and Bond (1991) and Arellano and Bover (1995), Manuel

Arellano and his collaborators presented foundational analyses of questions of identification,

estimation, efficiency and specification testing in linear panel data models with feedback.

Today such models are both well-understood and widely-used (see Arellano (2003) for a

textbook review).

In contrast, the properties of nonlinear models with feedback are much less well-

understood. In this paper we study binary choice. Most existing work in this area focuses on

the case where the covariate is either strictly exogenous or a lagged outcome. Under strict

exogeneity, Rasch (1960) and Andersen (1970) show that the coefficient on the covariate is

point-identified using two periods of data when shocks are logistic. Chamberlain (2010) pro-

vides conditions under which the logit case is the only one admitting point-identification with

two periods (Davezies et al. (2020) provide extensions of this result to the case of T > 2).

In the dynamic case, where the covariate is a lagged outcome, Cox (1958), Chamberlain

(1985) and Honoré and Kyriazidou (2000) derive conditions for point-identification of the

coefficient on the lagged outcome in the logit case, while Honoré and Tamer (2006) show how

to compute bounds on coefficients for probit and other models.

Results for binary choice panel models with predetermined covariates are limited. Cham-

berlain (2022) studies identification and semiparametric efficiency bounds in a class of non-

linear panel data models with feedback; he provides both positive and negative results. In

an hitherto unpublished section of an early draft of that paper (Chamberlain, 1993), he

proves that the coefficient on a lagged outcome is not point-identified in a dynamic logit

model when only three periods of outcome data are available. Arellano and Carrasco (2003)

1Dependence between the covariates and the time-invariant heterogeneity – the so-called “fixed effects” –
is, of course, allowed.
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and Honoré and Lewbel (2002) study binary choice models with predetermined covariates.

Arellano and Carrasco (2003) assume that the dependence between the time-invariant het-

erogeneity and the covariates is fully characterized by its conditional mean given current and

lagged covariates. Honoré and Lewbel (2002) assume that one of the covariates is indepen-

dent of the individual effects conditional on the other covariates. In a recent contribution,

Pigini and Bartolucci (2022) show that one can accommodate specific forms of feedback while

maintaining point-identification in binary choice models with pretermined covariates.2

In what follows we pose two questions. First, under what conditions is the coefficient

on a predetermined covariate in a binary choice panel data model point-identified? Second,

when the coefficient is only set-identified, how extreme is the failure of point-identification;

i.e., what is the width of the identified set?

Our analyses leave the dependence between the (time-invariant) unit-specific heterogene-

ity and the covariates unrestricted. We focus on the special case of a single binary prede-

termined covariate, leaving the feedback process from lagged outcomes, covariates and the

unit-specific heterogeneity onto future covariate realizations fully unrestricted. This is a

substantial relaxation of the strict exogeneity assumption.

Regarding point-identification, we provide a simple condition on the model which guaran-

tees that point-identification fails when T periods of data are available (and T is fixed). The

condition is satisfied in most familiar models of binary choice, including the logit one. This

finding contrasts with the prior work on logit models cited above, where point-identification

typically holds for a sufficiently long panel. As a notable exception, the exponential binary

choice model introduced by Al-Sadoon et al. (2017) does not satisfy our condition. In fact,

point-identification holds in that case.

Regarding identified sets, we first show that sharp bounds on the coefficient can be com-

puted using linear programming techniques. Our method builds on Honoré and Tamer (2006),

however, in contrast to their work, we allow for heterogeneous feedback. While the regres-

sor coefficient is our main target parameter, we also derive the identified set for an average

partial effect. This set can be computed using linear programming techniques as well.

Second, we numerically compute examples of identified sets. We find that, relative to the

strictly exogenous case, allowing for a predetermined covariate tends to increase the width of

the identified set. However, our calculations also suggest that the identified set can remain

informative under predeterminedness, even in panels with as few as two periods, for both the

coefficient and the average partial effect. Finally, as is true under strict exogeneity, the widths

of the identified sets decrease quickly as the number of periods increases. These observations

2In this paper we focus on panel data with a fixed number T of time periods. The large-T literature has
also considered models with dynamics and feedback, see for example Carro (2007), Hahn and Kuersteiner
(2002), and Fernández-Val (2009).
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are based upon sets computed under a particular data generating processe (DGP). It is

possible that identified sets may be larger under certain types of feedback.

The outline of the paper is as follows. In Section 2 we present the model. In Section

3 we provide a condition that implies that the common parameter in this model is not

point-identified when T = 2. In Section 4 we show that our condition implies failure of

point-identification for all (finite) T . In Section 5 we show how to compute identified sets on

coefficients and average partial effects, and we report the results of a small set of numerical

illustrations. In Section 6 we describe potential restrictions one could impose on the feedback

process. These restrictions may restore point-identification or shrink the identified set. We

conclude in Section 7. Proofs are contained in the appendix. Lastly, replication codes are

available as supplementary material.

2 The model

Available to the econometrician is a random sample of n units, each of which is followed for

T ≥ 2 time periods. We focus on short panels, and keep T fixed. The sampling process

asymptotically reveals the joint distribution of (X1, . . . , XT , Y1, . . . , YT ).

For any sequence of random variables Zt and any non-stochastic sequence zt, we use the

shorthand notation Zt:t+s = (Z ′t, ..., Z
′
t+s)

′ and zt:t+s = (z′t, ..., z
′
t+s)

′. In addition, we simply

denote Zt = Z1:t and zt = z1:t when the subsequence starts in the first period.

Let Yit ∈ {0, 1} and Xit ∈ {0, 1} denote a binary outcome and a binary covariate, respec-

tively. We assume that

Pr(Yit = 1 |Y t−1
i , X t

i , αi; θ) = F (θXit + αi), t = 1, . . . , T,

where αi ∈ S ⊂ R is a scalar individual effect, F (·) is a known differentiable cumulative

distribution function, and θ ∈ Θ is a scalar parameter.

Let πx1(α) denote the distribution of heterogeneity given the initial condition X1 = x1;

i.e., the distribution of αi |Xi1. We leave this distribution unrestricted on S. When S is

a discrete subset of the real line, πx1(α) belongs to the unit simplex on S, however it is

otherwise unrestricted. We denote as Π the collection of all πx1(α), for all x1 ∈ {0, 1} and

α ∈ S.

For each t ≥ 2, let

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1(α), t = 2, . . . , T,

denote the feedback process through which lagged outcomes, past covariates and heterogeneity

3
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affect the current covariate. We leave this distribution unrestricted as well. We denote as

G ∈ GT the collection of all Gt
yt−1,xt−1(α), for all t ∈ {2, ..., T}, yt−1 ∈ {0, 1}t−1, xt−1 ∈

{0, 1}t−1, and α ∈ S.

The (integrated) likelihood function conditional on the first period’s covariate is

Pr
(
Y T
i = yT , X2:T

i = x2:T |Xi1 = x1

)
=

∫
S

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt︸ ︷︷ ︸
outcomes

×
T∏
t=2

Gt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt︸ ︷︷ ︸
feedback

× πx1(α)︸ ︷︷ ︸
heterogeneity

dµ(α), (1)

for some (discrete or continuous) measure µ on S.

A key feature of a model with predetermined covariates is the dependence of the feedback

process on lagged outcomes, as reflected in the dependence of Gt on yt−1 in (1). When

this dependence is ruled out, the covariate is strictly exogenous, and the likelihood function

simplifies.3 Dynamic responses of covariates to lagged outcome realizations are central to

many economic models, including those where Xit is a choice variable, policy, or a dynamic

state variable.

For any (θ, π,G) ∈ Θ× Π× GT , and any (yT , x2:T ) ∈ {0, 1}2T−1, let Qx1(y
T , x2:T ; θ, π,G)

denote the right-hand side of (1). Moreover, let Qx1(θ, π,G) denote the 22T−1 × 1 vector

collecting all those elements, for all (yT , x2:T ) ∈ {0, 1}2T−1. Finally, let Q(θ, π,G) denote

the 22T × 1 vector stacking Q1(θ, π,G) and Q0(θ, π,G). For a given (population) (θ, π,G) ∈
Θ× Π× GT , we define the identified set of θ as

ΘI =
{
θ̃ ∈ Θ : ∃(π̃, G̃) ∈ Π× GT : Q(θ̃, π̃, G̃) = Q(θ, π,G)

}
. (2)

The set in (2) includes all θ̃ ∈ Θ where, for that θ̃, it is possible to find a heterogeneity

distribution π̃ ∈ Π, and a feedback process G̃ ∈ GT , such that the resulting conditional

3Under strict exogeneity, the likelihood function factors as

Pr
(
Y Ti = yT , X2:T

i = x2:T |Xi1 = x1
)

=

[ ∫
S

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−ytπxT (α)dµ(α)

]
× Pr

(
X2:T
i = x2:T |Xi1 = x1

)
,

where πxT (α) denotes the distribution of heterogeneity given all periods’ covariates x1, ..., xT .
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likelihood assigns the same probability to each of the 22T−1 possible data outcomes as the

true one (given both Xi1 = 0 and Xi1 = 1).

In the first part of the paper, we provide conditions on the model under which ΘI is not

a singleton. This corresponds to cases where θ is not point-identified. In the second part of

the paper, we report numerical calculations of ΘI under particular DGPs.

Our focus on θ is motivated by the extensive literature on the identification of coefficients

in binary choice models. However, in applications, average effects may also be of interest. In

the second part of the paper, we will also report numerical calculations of identified sets for

an average partial effect associated with a change in the binary predetermined covariate.

3 Failure of point-identification in two-period panels

We first present an analysis of point-identification in the two-period case, since this leads to

simple and transparent calculations. In the next section, we will then generalize this result

to accommodate T ≥ 2 periods.

3.1 Assumptions and result

To keep the formal analysis simple, in this section and the next we assume that αi takes a

finite number of values, with known support points.

Assumption 1. S = {α1, ..., αK}, where α1, ..., αK are known, and µ =
∑K

k=1 δαk
, where δα

denotes the Dirac measure at α.

Assumption 1 makes the model fully parametric. However this is not a limitation as our

aim in this section and the next is to derive conditions under which point-identification fails.

The conditions we provide will require sufficiently many support points.4

We rely on the parameterization given by the 2(K−1)×1 vector π = (π′1, π
′
0)′, where, for

all x1 ∈ {0, 1}, πx1 = (πx1(α1), . . . , πx1(αK−1))′ and πx1(αK) = 1 −
K−1∑
k=1

πx1(αk). The vector

π ∈ Π is unrestricted, except for the fact that πx1(α), for α ∈ S, belongs to the unit simplex.

This parameterization handles the fact that probability mass functions sum to one.

We next impose the following assumption on the population parameters.

Assumption 2. θ ∈ Θ, π ∈ Π, and G ∈ GT are all interior, and F (θx + α) ∈ (0, 1) for all

x ∈ {0, 1} and α ∈ S.

4The analysis is essentially unchanged if one instead assumes that µ =
∑K
k=1 λkδαk

, for some λk > 0.
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Assumption 2 places restrictions on the underlying parametric binary choice model and

heterogeneity distribution. It rules out heterogeneity distributions that induce a point mass

of “stayers” (i.e., units with such extreme values of α that they either always take the binary

action or they never do).5 Assumption 2 also rules out the “staggered adoption” design com-

mon in difference-in-differences analyses. Exploring the implications of non-interior feedback

processes is left for future work.

Finally, we assume that the parameter point is regular in the sense of Rothenberg (1971).

Assumption 3. (θ, π,G) is a regular point of the Jacobian matrix ∇Q(θ, π,G), in the sense

that the rank of ∇Q(θ̃, π̃, G̃) is constant for all (θ̃, π̃, G̃) in an open neighborhood of (θ, π,G).

The assumption of regularity is standard in the literature on the identification of para-

metric models (Rothenberg, 1971). If F (·) is analytic, the irregular points of ∇Q(θ, π,G)

(i.e., the points (θ, π,G) such that Assumption 3 is not satisfied) form a set of measure zero

(Bekker and Wansbeek, 2001). Thus, Assumption 3 is satisfied almost everywhere in the

parameter space in many binary choice models, including the probit and logit ones.

We aim to provide a simple condition under which point-identification of θ fails when

T = 2. We start by observing that, when T = 2, the 22T−1 = 8 model outcome probabilities

given Xi1 = x1 are

Qx1(θ, π,G) =



Pr(Yi2 = 1, Xi2 = 1, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 1, Xi2 = 1, Yi1 = 0 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 1, Xi2 = 0, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 1, Xi2 = 0, Yi1 = 0 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 1, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 1, Yi1 = 0 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 0, Yi1 = 1 |Xi1 = x1; θ, π,G)

Pr(Yi2 = 0, Xi2 = 0, Yi1 = 0 |Xi1 = x1; θ, π,G)


,

5In some microeconometric datasets a substantial fraction of units never alter their value of Xt. For
example, in Card (1996) few workers join or leave a union during the sample period.
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which, given the structure of the model, coincide with

Qx1(θ, π,G) =



∫
S F (θ + α)G2

1,x1
(α)F (θx1 + α)πx1(α)dµ(α)∫

S F (θ + α)G2
0,x1

(α)[1− F (θx1 + α)]πx1(α)dµ(α)∫
S F (α)[1−G2

1,x1
(α)]F (θx1 + α)πx1(α)dµ(α)∫

S F (α)[1−G2
0,x1

(α)][1− F (θx1 + α)]πx1(α)dµ(α)∫
S [1− F (θ + α)]G2

1,x1
(α)F (θx1 + α)πx1(α)dµ(α)∫

S [1− F (θ + α)]G2
0,x1

(α)[1− F (θx1 + α)]πx1(α)dµ(α)∫
S [1− F (α)] [1−G2

1,x1
(α)]F (θx1 + α)πx1(α)dµ(α)∫

S [1− F (α)] [1−G2
0,x1

(α)][1− F (θx1 + α)]πx1(α)dµ(α)


. (3)

With this notation in hand we present the following lemma.

Lemma 1. Let T = 2. Suppose that Assumptions 1, 2 and 3 hold, and that θ is point-

identified. Then, there exists x1 ∈ {0, 1} and a non-zero function φx1 : {0, 1}3 → R such

that:

(i) for all α ∈ S and y1 ∈ {0, 1},

1∑
y2=0

φx1(y1, y2, 1)F (θ + α)y2 [1− F (θ + α)]1−y2 =
1∑

y2=0

φx1(y1, y2, 0)F (α)y2 [1− F (α)]1−y2 ;

(4)

(ii) for all α ∈ S and x2 ∈ {0, 1},

1∑
y2=0

1∑
y1=0

φx1(y1, y2, x2)F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

(5)

The proof of Lemma 1 exploits the fact that, if θ is point-identified, then it is also locally

point-identified. Together with the assumption that the parameter is regular, this allows us

to apply a result of Bekker and Wansbeek (2001) regarding the identification of subvectors,

which guarantees the existence of some x1 ∈ {0, 1} such that ∇θ′Qx1 does not belong to the

range of the matrix
[
∇π′x1

Qx1 ∇G′x1
Qx1

]
. We then show, using (3), that this implies the

existence of φx1 6= 0 such that (4) and (5) hold.

When the population parameter θ is point-identified, Lemma 1 suggests a method-of-

moments approach to estimation. In such settings, φXi1
(Yi1, Yi2, Xi2) will generally be a

non-trivial function of θ. Let φXi1
(Yi1, Yi2, Xi2; θ) be this function. Next, note that condition
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(4) in Lemma 1 corresponds to the conditional moment restriction

E [φXi1
(Yi1, Yi2, Xi2; θ) |Xi1, Xi2, Yi1, αi] = E [φXi1

(Yi1, Yi2, Xi2; θ) |Xi1, Yi1, αi] , (6)

while – continuing to maintain (4) – equation (5) implies the additional requirement that

E [φXi1
(Yi1, Yi2, Xi2; θ) |Xi1, αi] = 0. (7)

Analog estimators in point-identified models with feedback, based on these observations, are

explored in our companion paper (Bonhomme et al., 2022).

This formulation clarifies that a necessary condition for point-identification of θ is the

existence of a non-zero moment function, φXi1
(Yi1, Yi2, Xi2; θ), with a mean that is invariant

to Xi2 given αi and the past (i.e., the first period’s covariate and outcome). Such a moment

function is “feedback robust”, in the sense that it remains valid across all possible feedback

processes. This is the content of condition (4) in Lemma 1, while (5) imposes a similar

invariance to the distribution of unobserved heterogeneity.

To show that point-identification fails, our focus here, we need to show that no such

non-zero moment function exists. It turns out that there is a very simple condition for this

in our model. Specifically, from Lemma 1 we obtain the following corollary.

Corollary 1. Let T = 2. Suppose that Assumptions 1, 2 and 3 hold, and that 1, F (α), and

F (θ + α), for α ∈ S, are linearly independent, then θ is not point-identified.

Corollary 1 shows that a necessary condition for identification of θ is that 1, F (α), and

F (θ + α), for α ∈ S, are linearly dependent. This condition arises directly from condition

(4), which requires the existence of a moment function that is robust to unknown feedback.

Indeed, one can show that 1, F (α), and F (θ + α) are linearly dependent if and only if there

exists a non-constant function φ such that

E [φ(Yit, Xit) |Xit, αi] = E [φ(Yit, Xit) |αi] . (8)

However, the condition that 1, F (α), and F (θ + α) be linearly dependent is restrictive,

as we show in the next subsection.6

6While here we focus on a discrete S under Assumption 1, note that, when θ 6= 0 and F is strictly
increasing on R, 1, F (α), and F (θ + α), for α ∈ R, cannot be linearly dependent. If that were the case,
then for some non-zero triplet (A,B,C) we would have AF (θ + α) + BF (α) + C = 0 for all α ∈ R. This
would imply, by taking α → ±∞ that C = 0 and A + B = 0, which would then imply A = B = C = 0 and
contradict the assumption that (A,B,C) is non-zero.
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Remark 1. Despite the negative result of Corollary 1, the sign of θ is identified provided

that Assumption 2 holds and F (·) is strictly increasing. Specifically, we show in Appendix C

that

sign(θ) = sign (E [Yi2 − Yi1 |Xi1 = 0]) = sign (E [Yi1 − Yi2 |Xi1 = 1]) .

3.2 The logit model

Consider the logit model with a binary predetermined covariate, which corresponds to F (u) =
eu

1+eu
. In this case, the linear dependence condition of Corollary 1 requires that, for some non-

zero triplet (A,B,C),

A
eθ+α

1 + eθ+α
+B

eα

1 + eα
+ C = 0, for all α ∈ S.

However, this implies

Aeθeα(1 + eα) +Beα(1 + eθeα) + C(1 + eα)(1 + eθeα) = 0, for all α ∈ S,

which is a quadratic polynomial equation in eα. Therefore, provided that there are K ≥ 3

values in S, this implies

Aeθ +Beθ + Ceθ = 0, Aeθ +B + (1 + eθ)C = 0, C = 0,

which, provided that θ 6= 0, entails

A = B = C = 0,

contradicting the assumption that (A,B,C) is non-zero.

We have thus proved the following corollary.

Corollary 2. Consider the logit model with T = 2. Suppose that Assumptions 1, 2 and 3

hold, that θ 6= 0, and that S contains at least three points, then θ is not point-identified.

A precedent to Corollary 2 is given in the unpublished working paper by Chamberlain

(1993) mentioned in the introduction. In the model he considers, Xit = Yi,t−1 is a lagged

outcome, and T = 2 (hence, outcomes are observed for three periods). His model also includes

an additional regressor: an indicator for period t = 2.
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3.3 The exponential model

Suppose now that, for u ≥ 0, F (u) = 1 − e−u. This corresponds to the exponential binary

choice model of Al-Sadoon et al. (2017). Note that here the support of F (·) is a strict subset

of the real line. In this case, letting

A = eθ, B = −1, C = 1− eθ,

we have

A[1− e−(θ+α)] +B[1− e−α] + C = 0.

Hence the non point-identification condition of Corollary 1 is not satisfied in the exponential

binary choice model.

In fact, in this case (4) and (5) are satisfied for

φx1(y1, y2, x2; θ) = (1− y2)eθx2 − (1− y1)eθx1 ,

and θ satisfies the conditional moment restriction

E[φXi1
(Yi1, Yi2, Xi2; θ) |Xi1] = 0,

that is,

E[(1− Yi2)eθXi2 − (1− Yi1)eθXi1 |Xi1] = 0. (9)

See Wooldridge (1997) for several related results. Furthermore, one can show formally that

θ is point-identified based on (9), see Appendix D.

4 Failure of point-identification in T -period panels for

T > 2

In this section we generalize our analysis to an arbitrary number of periods and state our

main result.

4.1 Main result

The arguments laid out in the previous section extend to an arbitrary number of time periods,

T ≥ 2. Indeed, using a similar strategy to the proof of Lemma 1 and proceeding by induction,

we obtain the following lemma.

10



Lemma 2. Let T ≥ 2. Suppose that Assumptions 1, 2 and 3 hold, and that θ is point-

identified. Then, there exists x1 ∈ {0, 1} and a non-zero function φx1 : {0, 1}2T−1 → R such

that:

(i) for all α ∈ S, s ∈ {0, ..., T − 2}, yT−(s+1) ∈ {0, 1}T−(s+1), xT−(s+1) ∈ {0, 1}T−(s+1),

∑
yT−s:T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt (10)

does not depend on xT−s:T ;

(ii) for all α ∈ S and x2:T ∈ {0, 1}T−1,

∑
yT∈{0,1}T

φx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt = 0. (11)

Similarly to Lemma 1, Lemma 2 implies the existence of a moment function, with (gen-

erally) non-trivial dependence on θ, which is “feedback robust”, in the sense that, for all

s ∈ {0, ..., T − 2},

E
[
φXi1

(Y T
i , X

2:T
i ; θ) |XT−s

i , Y
T−(s+1)
i , αi

]
= E

[
φXi1

(Y T
i , X

2:T
i ; θ) |XT−(s+1)

i , Y
T−(s+1)
i , αi

]
,

while also requiring that

E
[
φXi1

(Y T
i , X

2:T
i ; θ) |Xi1, αi

]
= 0.

From Lemma 2 we obtain the following corollary, which we also prove by induction. This

is our main result.

Corollary 3. Let T ≥ 2. Suppose that Assumptions 1, 2 and 3 hold, and that 1, F (α), and

F (θ + α), for α ∈ S, are linearly independent, then θ is not point-identified.

4.2 Logit model

Using that, when θ 6= 0, 1, F (α), and F (θ + α), for α ∈ S, are linearly independent in

the logit model, Corollary 3 implies that in the logit model with a binary predetermined

covariate, θ is not point-identified irrespective of the number of time periods available.

Corollary 4. Consider the logit model with T ≥ 2. Suppose that Assumptions 1, 2 and 3

hold, that θ 6= 0, and that S contains at least three points, then θ is not point-identified.

This non point-identification result contrasts with prior work on logit panel data models.

Under strict exogeneity, Rasch (1960) and Andersen (1970) have established that θ is point-

11



identified under mild conditions on Xit whenever T ≥ 2. In the dynamic logit model when

Xit = Yi,t−1, Chamberlain (1993) shows that θ is not point-identified when T = 2 (a result also

obtained as an implication of Corollary 1). However, Chamberlain (1985), and Honoré and

Kyriazidou (2000) in a model with covariates, show that θ is point-identified under suitable

conditions whenever T ≥ 3.7 By contrast, Corollary 4 shows that, when the feedback process

through which current covariates are influenced by lagged outcomes is unrestricted, the failure

of point-identification is pervasive irrespective of T , despite the logit structure.

5 Characterizing identified sets

The previous sections show that point-identification often fails in binary choice models with

a predetermined covariate. In this section, we explore the degree of identification failure by

presenting numerical calculations of the identified set ΘI for specific parameter values. In

the last part of the section we present calculations of the identified set for an average partial

effect.

5.1 Linear programming representation

We show that the identified set ΘI , defined by set (2) above, can be represented as a set of

θ values for which a certain linear program has a solution. This characterization facilitates

numerical computation of the identified set.

To present our construction, let us first focus on the T = 2 case, and suppose that

Assumption 1 holds, so αi has discrete support. For any hypothetical values (θ̃, π̃, G̃) ∈
Θ× Π× G2, we define

ψx1(x2, y1, α) = Pr(Xi2 = x2, Yi1 = y1, αi = α |Xi1 = x1; θ̃, π̃, G̃). (12)

The right-hand-side of (12) is determined by the unknown heterogeneity distribution, the

parametric likelihood for Y1 (given X1 and α), and the unknown feedback process for X2.

Finding ΘI essentially involves repeatedly asking whether, for a given θ̃, there exists a valid

feedback process and heterogeneity distributions consistent with the observed data distribu-

tion (and the parametric part of the model).

7Since in the dynamic logit model Xit = Yi,t−1 is a lagged outcome, T ≥ 2 (respectively, T ≥ 3) requires
that individual outcomes be available for at least three (resp., four) periods.
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Specifically we first require that ψx1(x2, y1, α) is a valid probability mass function:

ψx1(x2, y1, α) ≥ 0,
1∑

x2=0

1∑
y1=0

∫
S
ψx1(x2, y1, α)dµ(α) = 1. (13)

Second, we check that it is consistent with the parametric likelihood model for Y1 given X1

and α:

1∑
x2=0

ψx1(x2, y1, α) = F (θ̃x1 + α)y1 [1− F (θ̃x1 + α)]1−y1
1∑

x2=0

1∑
y1=0

ψx1(x2, y1, α). (14)

Finally, we conclude that θ̃ ∈ ΘI if and only if

Qx1(y2, y1, x2; θ, π,G) =

∫
S
F (θ̃x2 + α)y2 [1− F (θ̃x2 + α)]1−y2ψx1(x2, y1, α)dµ(α), (15)

for some vectors ψx1 also satisfying (13) and (14) for x1 ∈ {0, 1}. Condition (15) ensures

compatibility with the likelihood contribution for the period 2 outcome, Y2.

Since all of the equalities and inequalities in (13), (14) and (15) are linear in ψx1 , it

follows that one can verify whether θ̃ ∈ ΘI by checking the existence of a solution to a

finite-dimensional linear program.8 We provide details about computation in Appendix H.

The characterization of ΘI in (13), (14) and (15) remains valid when Assumption 1 does

not hold, and αi has continuous support. In that case, one needs to interpret ψx1 in (12) as the

product between the density of αi conditional on (Xi2, Yi1) and the probability of (Xi2, Yi1),

both of them conditional on Xi1 and for hypothetical parameter values. The resulting linear

program is infinite-dimensional in that case.

The linear programming representation of ΘI extends to any number T ≥ 2 of periods.

To see this, let, for some (θ̃, π̃, G̃) ∈ Θ× Π× GT ,

ψx1(x
2:T , yT−1, α) = Pr(X2:T

i = x2:T , Y T−1
i = yT−1, αi = α |Xi1 = x1; θ̃, π̃, G̃),

with a similar definition when the support of αi is not discrete and Assumption 1 does not

hold. In Appendix G we derive the following characterization of the (sharp) identified set

8Note that, to compute the identified set under the assumption of strict exogeneity, one can simply modify
this approach by adding to (13), (14) and (15) the additional restriction

ψx1(x2, 1, α)

F (θ̃x1 + α)
=

ψx1(x2, 0, α)

1− F (θ̃x1 + α)
for all (x2, x1, α),

which is also linear in ψx1
. The fact that, under strict exogeneity, ΘI can be computed using linear program-

ming was first established by Honoré and Tamer (2006).
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ΘI .

Proposition 1. ( Identified Set) θ̃ ∈ ΘI if, and only if,

Qx1(y
T , x2:T ; θ, π,G) =

∫
S
F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α)dµ(α), (16)

for some integrable functions ψx1 : {0, 1}2T−2 × S → R, x1 ∈ {0, 1}, satisfying

ψx1(x
2:T , yT−1, α) ≥ 0,

∑
x2:T∈{0,1}T−1

∑
yT−1∈{0,1}T−1

∫
S
ψx1(x

2:T , yT−1, α)dµ(α) = 1, (17)

and, for all s ∈ {2, ..., T},9 also satisfying∑
xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T−1∈{0,1}T−s+1

ψx1(x
2:T , yT−1, α).

(18)

Proposition 1 shows that one can verify whether θ̃ ∈ ΘI by checking the feasibility of

a (finite- or infinite-dimensional) linear program. In a setting with lagged outcomes and

strictly exogenous covariates, Honoré and Tamer (2006) provided an analogous linear pro-

gramming representation of the identified set. By contrast, in Proposition 1 we characterize

the identified set of θ in the general predetermined case where the Granger condition fails;

i.e., when Gyt−1,xt−1(α) may depend on yt−1, a situation that Honoré and Tamer (2006) did

not consider but anticipated in their conclusion.

5.2 Numerical illustration

In this section we compute identified sets ΘI in logit and probit models for a set of example

data generating processes (DGPs). In the DGPs, Xit follows a Bernoulli distribution on

{0, 1} with probabilities (1
2
, 1

2
), independent over time, and αi takes K = 31 values with

probabilities closely resembling those of a standard normal (a specification we borrow from

Honoré and Tamer, 2006), and is drawn independently of (Xi1, ..., XiT ). In the logit case,

9For s = T , restriction (18) should be read as

1∑
xT=0

ψx1(x2:T , yT−1, α) = F (θ̃xT−1 + α)yT−1 [1− F (θ̃xT−1 + α)]1−yT−1

1∑
xT=0

1∑
yT−1=0

ψx1(x2:T , yT−1, α).
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F (u) = eu

1+eu
, and in the probit case, F (u) = Φ(u) for Φ the standard normal cdf. Lastly, we

vary θ between −1 and 1. Note that Xit is strictly exogenous in this data generating process.

We characterize identified sets in two scenarios: assuming that Xit are strictly exogenous,

and only assuming that Xit are predetermined.

In Figure 1 we report our numerical calculations of the identified set ΘI for the logit model

(in the left column panels) and for the probit model (in the right column panels). The three

vertical panels correspond to the T = 2, 3, 4 cases, respectively. In each graph, we report

two sets of upper and lower bounds: those computed while maintaining the strict exogeneity

assumption (in dashed lines) and those computed maintaining just predeterminedness (in

solid lines). We report the true parameter θ on the x-axis. To compute the sets, we assume

that αi has the same K = 31 points of support as in the DGP. We also experimented with

fewer and additional support points, as we report below.

Focusing first on the logit case, shown in the left column of Figure 1, we see that the

identified set ΘI under strict exogeneity is a singleton for any value of θ and irrespective of

T . This is not surprising since θ is point-identified in the static logit model. In contrast,

the upper and lower bounds of the identified set do not coincide in the predetermined case,

consistent with our non point-identification result. At the same time, the identified sets

appear rather narrow, even when T = 2, and the width of the set tends to decrease rapidly

when T increases to three and four periods. This is qualitatively similar to the observation of

Honoré and Tamer (2006), who focused on dynamic probit models and found that the width

of the identified set tends to decrease rapidly with T .

Focusing next on the probit case, shown in the right column of Figure 1, we see that the

identified set ΘI under strict exogeneity is not a singleton. Moreover, allowing the covariate

to be predetermined increases the width of the identified set. However, as in the logit case,

the sets appear rather narrow, even when T = 2, and their widths decrease quickly as T

increases. Of course, these observations are specific to a particular data-generating process

and the corresponding bounds may be wide for other DGPs.

The results in Figure 1 are obtained by assuming that the researcher knows the (finite)

support of αi. This approach is similar to the one in Honoré and Tamer (2006). Alternatively,

one may wish to characterize the identified set in a class of models where αi is continuous,

e.g., when S = R and µ is the Lebesgue measure. Doing so, as noted earlier, requires

approximating an infinite-dimensional linear program. In Appendix Figure 1, we go take a

heuristic step in this direction by reporting numerical approximations to the identified sets,

for T = 2, obtained by taking K = 5, K = 50, and K = 500 points of support for αi,

respectively, where the points of support are equidistant percentiles of a standard normal

distribution. We find very minor differences compared to the case K = 31 that we report in
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Figure 1: Identified sets in logit and probit models
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Notes: Upper and lower bounds of the identified set ΘI in a logit model (left column) and a probit model

(right column), for T = 2, 3, 4. The identified sets under strict exogeneity are indicated by the dashed lines,

the sets under predeterminedness are indicated by the solid lines. The population value of θ is given on the

x-axis.
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Figure 1. While we do not provide a formal analysis of numerical approximation properties,

this suggests that identified sets under continuous αi may not be markedly different from the

ones in Figure 1.

Overall, these calculations suggest that, while relaxing strict exogeneity tends to increase

the widths of the bounds, the identified sets under predeterminedness can be informative

even when the number of periods is very small. To reiterate, these conclusions are based on

a particular set of example DGPs.

5.3 Average partial effect

Although our focus in this paper is on the parameter θ, in applications researchers are often

interested in average partial effects such as

∆ = E[Pr(Yit = 1 |Xit = 1, αi)− Pr(Yit = 1 |Xit = 0, αi)], (19)

where the expectation is taken with respect to the distribution of αi.

The identified set for ∆ can also be characterized as the solution to a linear program.

Indeed, it follows from Proposition 1 that ∆̃ is in the identified set of ∆ if and only if there

exists θ̃, ψ0 and ψ1 such that (16), (17), and (18) hold, and

∆̃ =

∫
S
[F (θ̃ + α)− F (α)]

∑
x1∈{0,1}

qx1
∑

x2:T∈{0,1}T−1

∑
yT−1∈{0,1}T−1

ψx1(x
2:T , yT−1, α)dµ(α), (20)

where qx1 = Pr(Xi1 = x1). For any given θ̃ ∈ ΘI , we can therefore compute the set of

∆̃ parameters in the identified set by solving a linear program. We provide details about

computation in Appendix H.

In Figure 2 we report our computations of the identified set for the average partial effect

∆, relying on the same parameter values and DGP as before. Focusing first on the logit case,

shown in the left column of the figure, we see that the identified set under strict exogeneity

is not a singleton, except when the true θ and ∆ are equal to zero. This is not surprising,

since average partial effects generally fail to be point-identified in binary choice models, even

when covariates are strictly exogenous. Yet, the sets seem rather narrow, even when T = 2.

Allowing the covariate to be predetermined increases the widths of the sets, however the

increase is relatively moderate. Moreover, the sets under predeterminedness are very tight

whenever T ≥ 3.

Focusing next on the probit case, shown in the right column of Figure 2, we see that al-

though the sets appear wider than in the logit case, relaxing strict exogeneity only moderately

17



Figure 2: Identified sets for average partial effects in logit and probit models
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Notes: Upper and lower bounds of the identified set for the average partial effect in a logit model (left column)

and a probit model (right column), for T = 2, 3, 4. The identified sets under strict exogeneity are indicated

by the dashed lines, the sets under predeterminedness are indicated by the solid lines. The population value

of the average partial effect is given on the x-axis.
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increases the widths of the sets, especially when T ≥ 3.

Lastly, while we compute the sets in Figure 2 under the assumption that αi has the same

K = 31 points of support as in the DGP, in Appendix Figure 2 we report approximations of

the sets, for T = 2, obtained using K = 5, K = 50, and K = 500 points of support for αi.

The sets appear very similar to the ones based on K = 31 points of support shown in Figure

2. However, in this case as well, we do not formally analyze the numerical approximation of

the identified sets under continuous αi.

6 Restrictions on the feedback process

Our analysis suggests that failures of point-identification are commonplace in binary choice

models with a predetermined covariate. In this section we describe possible restrictions on

the model that can strengthen its identification content. We focus on restrictions on the

feedback process, since restrictions on individual heterogeneity are rarely motivated by the

economic context.

6.1 Homogeneous feedback

In some applications one may want to restrict the feedback process to not depend on time-

invariant heterogeneity; that is, to impose that

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1 (21)

is independent of α. For example, in structural dynamic discrete choice models, researchers

may be willing to model the law of motion of state variables such as dynamic production

inputs as homogeneous across units. Kasahara and Shimotsu (2009) show how this assump-

tion can help identification in these models. Here we study how a homogeneity assumption

can lead to tighter identified sets in our setting.

To proceed, we focus on the case where T = 2. Given (21), the likelihood function takes

the form

Pr (Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1)

=

{∫
S
F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1πx1(α)dµ(α)

}
× [G2

y1,x1
]x2 [1−G2

y1,x1
]1−x2 ,

where the likelihood factors due to the fact that the feedback process does not depend on α.
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Hence, under Assumption 2 (which avoids division by zero) we have

Pr (Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1)

[G2
y1,x1

]x2 [1−G2
y1,x1

]1−x2

=

∫
S
F (θx2 + α)y2 [1− F (θx2 + α)]1−y2F (θx1 + α)y1 [1− F (θx1 + α)]1−y1πx1(α)dµ(α).

(22)

A key observation to make about (22) is its right-hand-side coincides with the likelihood

function of a binary choice model with a strictly exogenous covariate (where in addition αi

is independent of Xi2 given Xi1). In turn, the left-hand side is weighted by the inverse of the

feedback process. This is similar to the inverse-probability-of-treatment-weighting approach

to dynamic treatment effect analysis in Jamie Robins’ work (e.g., Robins, 2000), with the

difference that here we focus on panel data models with fixed effects.

The similarity between (22) and the strictly exogenous case directly delivers point-

identification results and consistent estimators. For example, suppose that F is logistic.

Given that the left-hand side of (22) is point-identified, it follows from standard arguments

(Rasch, 1960, Andersen, 1970) that θ is point-identified. Moreover, a consistent estimator of

θ is obtained by maximizing the weighted conditional logit log-likelihood

n∑
i=1

ω̂i1{Yi1+Yi2 = 1}

{
Yi1 ln

(
exp(θ̃Xi1)

exp(θ̃Xi1) + exp(θ̃Xi2)

)
+ Yi2 ln

(
exp(θ̃Xi2)

exp(θ̃Xi1) + exp(θ̃Xi2)

)}
,

with weights

ω̂i =
{

[Ĝ2
Yi1,Xi1

]Xi2 [1− Ĝ2
Yi1,Xi1

]1−Xi2

}−1

,

for Ĝ2
y1,x1

a consistent estimate of the homogeneous feedback probabilities.10

6.2 Markovian feedback

Another possible restriction on the feedback process is a Markovian condition, such as

Pr
(
Xit = 1 |Y t−1

i = yt−1, X t−1
i = xt−1, αi = α

)
= Gt

yt−1,xt−1
(α) (23)

is independent of (yt−2, xt−2). Such a condition may be natural in models where Xit is the

state variable in the agent’s economic problem (as in Rust, 1987 and Kasahara and Shimotsu,

2009, for example).

10The analysis in this subsection is not restricted to the binary covariate case. However, when Xit are
continuous, demonstrating

√
n consistency of θ̂ would generally require imposing rate-of-convergence and

other requirements on the first-step estimation of the ω̂i weights.
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In order to characterize the identified set ΘI with the Markovian condition (23) added,

we augment the restrictions (16), (17) and (18) with the fact that, for all s ∈ {2, ..., T},∑
xs+1:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s ψx1(x

2:T , yT−1, α)∑
xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s ψx1(x

2:T , yT−1, α)

does not depend on (ys−2, xs−2).11

A difficulty arises in this case since this additional set of restrictions is not linear in ψx1 .

As a result, one would need to use different techniques to characterize the identified set in

the spirit of Proposition 1, and to establish conditions for (the failure of) point-identification

in the spirit of Corollary 3. Given this, we leave the analysis of identification in models with

Markovian feedback processes to future work.

7 Conclusion

In this paper we study a binary choice model with a binary predetermined covariate. We find

that failures of point-identification are widespread in this setting. Point-identification fails in

many binary choice models, with apparently only a few exceptions (such as the exponential

model). At the same time, our numerical calculations of identified sets suggest that the

bounds on the parameter can be narrow, even in very short panels. This suggests that,

while the strict exogeneity assumption has identifying content, models with predetermined

covariates and feedback may still lead to informative empirical conclusions, both for the

coefficients of the covariates and for average partial effects.

Our analysis of models with a binary covariates can easily be extended to handle general

discrete covariates with finite support. In particular, for θ to be regularly point-identified

there need to exist x1 6= x2 in the support of Xit such that 1, F (θ′x1 + α), and F (θ′x2 + α),

for α ∈ S, are linearly dependent. This condition fails in many popular specifications such

as the logit. In turn, when Xit has finite, non-binary support, the identified set can still

be computed as a solution to a linear program, analogously to Proposition 1. However, the

extension to continuous covariates is not straightforward in our setting, in particular since

the notion of regularity maintained by Assumption 3 no longer applies.

Finally, although we have analyzed a binary choice model, our techniques can be used to

study other models with stronger identification content, such as models for count data (e.g.,

Poisson regression, Wooldridge, 1997, Blundell et al., 2002) and models with continuous out-

comes (e.g., censored regression, Honoré and Hu, 2004, and duration models, Chamberlain,

11When s = T , this requires that
ψx1 (x

2:T ,yT−1,α)∑1
xT =0 ψx1

(x2:T ,yT−1,α)
does not depend on (yT−2, xT−2).
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1985). Deriving sequential moment restrictions in such nonlinear models was considered

by Chamberlain (2022) and is further explored in our companion paper (Bonhomme et al.,

2022).
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APPENDIX

A Proof of Lemma 1

For any m× n matrix A, we will denote as

R(A) = {Au : u ∈ Rn}

the range of A,

N (A) = {u ∈ Rn : Au = 0}

the null space of A, and A† the Moore-Penrose generalized inverse of A.

We now proceed to prove Lemma 1. Since θ is point-identified, it is locally point-identified.

Since (θ, π,G) is a regular point of ∇Q(θ, π,G) by Assumption 3, it follows from Theorem 8

in Bekker and Wansbeek (2001) that

∇θ′Q /∈ R

([
∇π′1

Q1 ∇G′1
Q1 0 0

0 0 ∇π′0
Q0 ∇G′0

Q0

])
. (A1)

Therefore, there must exist x1 ∈ {0, 1} such that

∇θ′Qx1 /∈ R
([
∇π′x1

Qx1 ∇G′x1
Qx1

])
, (A2)

and in the rest of the proof we will fix this x1 value.

Let φ̃x1 denote the projection of ∇θ′Qx1 onto the orthogonal complement of the vector space

spanned by the columns of
[
∇π′x1

Qx1 ∇G′x1
Qx1

]
; that is,

φ̃x1 = ∇θ′Qx1 −
[
∇π′x1

Qx1 ∇G′x1
Qx1

] [
∇π′x1

Qx1 ∇G′x1
Qx1

]†
∇θ′Qx1 .

It follows from (A2) that φ̃x1 6= 0. Moreover, since ι′Qx1(θ, π,G) = 1, where ι denotes a

conformable vector of ones, we have

ι′∇θ′Qx1 = 0, ι′∇π′x1
Qx1 = 0, ι′∇G′x1

Qx1 = 0. (A3)

It follows that ι′φ̃x1 = 0, implying that φ̃x1 cannot be constant.
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Now, since v′φ̃x1 = 0 for all v ∈ R
([
∇π′x1

Qx1 ∇G′x1
Qx1

])
, we have

φ̃x1 ∈ N (∇πx1
Q′x1) ∩N (∇Gx1

Q′x1).

Next, let Pθ(x1, α) be the 8× 1 vector with elements

Pr(Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1, αi = α),

for (y2, x2, y1) ∈ {0, 1}3. Since φ̃x1 ∈ N (∇πx1
Q′x1), we have, for all α ∈ S,

φ̃′x1Pθ(x1, α) = φ̃′x1Pθ(x1, αK) ≡ Cx1 ,

where we have used the fact that πx1(αK) = 1−
K−1∑
k=1

πx1(αk).

Let us define the following demeaned version of φ̃x1 :
1

φx1 = φ̃x1 − Cx1ι.

Note that, since φ̃x1 is not constant, it follows that φx1 6= 0. Moreover, using (A2) and (A3)

we have

φx1 ∈ N (∇πx1
Q′x1) ∩N (∇Gx1

Q′x1),

from which it follows that

(i) ∇πx1
Q′x1φx1 = 0, (ii) ∇Gx1

Q′x1φx1 = 0.

We are now going to use (i) and (ii) to show (4)-(5). From (ii) we get, for all α ∈ S,

πx1(α)

(
φx1(1, 1, 1)F (θ + α)F (θx1 + α)− φx1(1, 1, 0)F (α)F (θx1 + α)

+ φx1(1, 0, 1)[1− F (θ + α)]F (θx1 + α)− φx1(1, 0, 0)[1− F (α)]F (θx1 + α)

)
= 0,

πx1(α)

(
φx1(0, 1, 1)F (θ + α)[1− F (θx1 + α)]− φx1(0, 1, 0)F (α)[1− F (θx1 + α)]

+ φx1(0, 0, 1)[1− F (θ + α)][1− F (θx1 + α)]− φx1(0, 0, 0)[1− F (α)][1− F (θx1 + α)]

)
= 0.

1The 8 × 1 vector φx1
represents a function φx1

: {0, 1}3 7→ R. With some abuse of terminology we
sometimes refer to φx1

as a vector and sometimes as a function.
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This implies, using Assumption 2,

φx1(1, 1, 1)F (θ + α)− φx1(1, 1, 0)F (α) + φx1(1, 0, 1)[1− F (θ + α)]− φx1(1, 0, 0)[1− F (α)] = 0,

φx1(0, 1, 1)F (θ + α)− φx1(0, 1, 0)F (α) + φx1(0, 0, 1)[1− F (θ + α)]− φx1(0, 0, 0)[1− F (α)] = 0,

which coincides with (4).

Lastly, from (i) we get, for all α ∈ S,

φ′x1Pθ(x1, α) = φ′x1Pθ(x1, αK)

= φ̃′x1Pθ(x1, αK)− Cx1 ι′Pθ(x1, αK)︸ ︷︷ ︸
=1

= φ̃′x1Pθ(x1, αK)− φ̃′x1Pθ(x1, αK)

= 0,

which can be equivalently written as

1∑
y2=0

1∑
x2=0

1∑
y1=0

φx1(y1, y2, x2) Pr(Yi2 = y2, Xi2 = x2, Yi1 = y1 |Xi1 = x1, αi = α; θ) = 0.

Now, using (4), this implies that, for all x2 ∈ {0, 1},

1∑
y2=0

1∑
y1=0

φx1(y1, y2, x2) Pr(Yi2 = y2 |Xi2 = x2, αi = α; θ) Pr(Yi1 = y1 |Xi1 = x1, αi = α; θ) = 0,

which coincides with (5).

B Proof of Corollary 1

The proof is by contradiction. Suppose that θ is point-identified. Then by (4) we have, for

some x1 ∈ {0, 1}, and for all y1 ∈ {0, 1} and α ∈ S,

φx1(y1, 0, 1)[1− F (θ + α)] + φx1(y1, 1, 1)F (θ + α) = φx1(y1, 0, 0)[1− F (α)] + φx1(y1, 1, 0)F (α).

Since 1, F (α), and F (θ + α), for α ∈ S, are linearly independent, we thus have, for all

y1 ∈ {0, 1},
φx1(y1, 0, 1) = φx1(y1, 1, 1) = φx1(y1, 0, 0) = φx1(y1, 1, 0). (A4)
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Next, using (5) at x2 = 1 we have

φx1(1, 1, 1)F (θ + α)F (θx1 + α) + φx1(0, 1, 1)F (θ + α)[1− F (θx1 + α)]

+ φx1(1, 0, 1)[1− F (θ + α)]F (θx1 + α) + φx1(0, 0, 1)[1− F (θ + α)][1− F (θx1 + α)] = 0.

Using (A4) then gives

φx1(1, 1, 1)F (θx1 + α) + φx1(0, 1, 1)[1− F (θx1 + α)] = 0.

Now, since 1 and F (θx1 + α), for α ∈ S, are linearly independent, it follows that

φx1(1, 1, 1) = φx1(0, 1, 1) = 0.

Using (A4) then also gives

φx1(1, 0, 1) = φx1(0, 0, 1) = 0.

Lastly, repeating the same argument starting with (5) at x2 = 0 gives

φx1(1, 1, 0) = φx1(0, 1, 0) = φx1(1, 0, 0) = φx1(0, 0, 0) = 0.

It follows that φx1 = 0, which leads to a contradiction.

C Proof of remark 1 (sign identification of θ)

Note that

E [Yi2 − Yi1 |Xi1 = 0] = E [E [Yi2 |Xi2, Yi1, Xi1 = 0, αi]− E [Yi1 |Xi1 = 0, αi] |Xi1 = 0]

= E [F (θXi2 + αi)− F (αi) |Xi1 = 0]

= E [(F (θ + αi)− F (αi))Xi2Yi1 + (F (θ + αi)− F (αi))Xi2(1− Yi1) |Xi1 = 0]

=

∫
S

1∑
y1=0

(F (θ + α)− F (α))G2
y1,0

(α)F (α)y1(1− F (α))1−y1π0(α)︸ ︷︷ ︸
>0 by Assumption 2

dµ(α).

(A5)

If θ = 0, (A5) implies that E [Yi2 − Yi1 |Xi1 = 0] = 0. Moreover, since F (·) is strictly in-

creasing, it follows that θ > 0 (respectively, < 0) and E [Yi2 − Yi1 |Xi1 = 0] > 0 (resp., < 0)

are equivalent. This implies that sign(θ) = sign (E [Yi2 − Yi1 |Xi1 = 0]). A similar argument

applied to Xi1 = 1 implies that sign(θ) = sign (E [Yi1 − Yi2 |Xi1 = 1]).
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D Identification in the exponential model

Let

φx1(θ̃)
def
≡ E[φx1(Y1, Y2, X2; θ̃) |Xi1 = x1] = E[(1− Yi2)eθ̃Xi2 − (1− Yi1)eθ̃Xi1 |Xi1 = x1].

We show that θ is the unique solution to the equation

φx1(θ̃) = 0.

Since φx1(θ) = 0, the result will follow if one can show that, for any x1 ∈ {0, 1}, φx1 is

strictly monotonic.

Let (θ1, θ2) ∈ Θ2 with θ1 > θ2. For x1 = 0, we have

φ0(θ1)− φ0(θ2) = E[(1− Yi2)eθ1Xi2 − (1− Yi1) |Xi1 = 0]− E[(1− Yi2)eθ2Xi2 − (1− Yi1) |Xi1 = 0]

= E[(1− Yi2)(eθ1Xi2 − eθ2Xi2) |Xi1 = 0]

= (eθ1 − eθ2)E[(1− Yi2)Xi2 |Xi1 = 0]

= (eθ1 − eθ2)E[(1− F (θ + αi))Xi2 |Xi1 = 0]

= (eθ1 − eθ2)︸ ︷︷ ︸
>0

∫
S

1∑
y1=0

(1− F (θ + α))G2
y1,0

(α)F (α)y1(1− F (α))1−y1π0(α)︸ ︷︷ ︸
>0 by Assumption 2

dµ(α)

> 0,

which shows that φ0 is strictly increasing. If x1 = 1, then

φ1(θ1)− φ1(θ2) = E[(1− Yi2)eθ1Xi2 − (1− Yi1)eθ1 |Xi1 = 1]− E[(1− Yi2)eθ2Xi2 − (1− Yi1)eθ2 |Xi1 = 1]

= E[(1− Yi2)(eθ1Xi2 − eθ2Xi2)− (1− Yi1)(eθ1 − eθ2) |Xi1 = 1]

= (eθ1 − eθ2)E[(1− Yi2)Xi2 − (1− Yi1) |Xi1 = 1]

= −(eθ1 − eθ2)E[(1− F (θ + αi))(1−Xi2) |Xi1 = 1]

= − (eθ1 − eθ2)︸ ︷︷ ︸
>0

×

∫
S

1∑
y1=0

(1− F (θ + α))(1−G2
y1,1

(α))F (θ + α)y1(1− F (θ + α))1−y1π1(α)︸ ︷︷ ︸
>0 by Assumption 2

dµ(α)

< 0,

29



which shows that φ1 is strictly decreasing.

E Proof of Lemma 2

In what follows we assume T ≥ 3, having already proved the validity of the claim for T = 2

in Lemma 1.

Since θ is point-identified it is locally point-identified. Additionally, since (θ, π,G) is a regular

point of ∇Q(θ, π,G) by Assumption 3, we can appeal to Theorem 8 in Bekker and Wansbeek

(2001) and follow the same line of arguments as in the proof of Lemma 1 to conclude that

there exists x1 ∈ {0, 1} and a 22T−1 × 1 vector φx1 6= 0 such that

(i) ∇πx1
Q′x1φx1 = 0, (ii) ∇Gx1

Q′x1φx1 = 0.

We will now prove (10) and (11) using finite induction.

Let us start with (10). Given s ∈ {0, ..., T − 2}, let P(s) denote the statement that, for all

yT−(s+1) ∈ {0, 1}T−(s+1) and xT−(s+1) ∈ {0, 1}T−(s+1),

∑
yT−s:T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

does not depend on xT−s:T .

Base case:

Condition (ii) implies that (
∂Qx1

∂GT
yT−1,xT−1(α)

)′
φx1 = 0,

or equivalently that

1∑
yT =0

1∑
xT =0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (−1)1−xT

×
T−1∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.
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Using Assumption 2, this simplifies to

1∑
yT =0

1∑
xT =0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (−1)1−xT = 0,

which implies that

1∑
yT =0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT

does not depend on xT .

Thus, P(0) is true.

Induction step:

Suppose that P(0), . . . ,P(s) are true for s ∈ {0, . . . , T − 3}. We are going to show that

P(s+ 1) is true.

Condition (ii) implies that  ∂Qx1

∂G
T−(s+1)

yT−(s+2),xT−(s+2)(α)

′ φx1 = 0.

If s < (T − 3), this corresponds to∑
yT−(s+1):T∈{0,1}s+2

∑
xT−(s+1):T∈{0,1}s+2

φx1(y
T , x2:T )

×
T∏

t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1)

×
T−(s+2)∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt−1,xt−1(α)xt [1−Gt

yt−1,xt−1(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.
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While if s = (T − 3), this corresponds to∑
y2:T∈{0,1}T−1

∑
x2:T∈{0,1}T−1

φx1(y
T , x2:T )

×
T∏
t=3

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θx2 + α)y2 [1− F (θx2 + α)]1−y2(−1)1−x2

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using Assumption 2 this gives, for all s ∈ {0, . . . , T − 3},∑
yT−(s+1):T∈{0,1}s+2

∑
xT−(s+1):T∈{0,1}s+2

φx1(y
T , x2:T )

×
T∏

t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1) = 0. (A6)

Let Ls+1 denote the left-hand side of (A6). Exploiting successively the fact that

P(0), . . . ,P(s) are true, alongside the property that, for all t ∈ {T − s, ..., T},

1∑
xt=0

Gt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt = 1, (A7)

it is easy to see that

Ls+1 =
∑

yT−(s+1):T∈{0,1}s+2

1∑
xT−(s+1)=0

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

× F (θxT−(s+1) + α)yT−(s+1) [1− F (θxT−(s+1) + α)]1−yT−(s+1)(−1)1−xT−(s+1) = 0.

Recalling that P(s) is true, this implies that

∑
yT−(s+1):T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−(s+1)

F (θxt + α)yt [1− F (θxt + α)]1−yt

does not depend on xT−(s+1):T . Hence, P(s+ 1) is true. This concludes the proof of (10).
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Finally, we show (11). As in the proof of Lemma 1, Condition (i) implies that∑
yT∈{0,1}T

∑
x2:T∈{0,1}T−1

φx1(y
T , x2:T )

×
T∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−ytGt
yt,xt(α)xt [1−Gt

yt,xt(α)]1−xt

× F (θx1 + α)y1 [1− F (θx1 + α)]1−y1 = 0.

Using (10) and (A7), it follows that

∑
yT∈{0,1}T

φx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt = 0,

which coincides with (11).

F Proof of Corollary 3

In what follows we assume T ≥ 3, having already proved the validity of the claim for T = 2

in Corollary 1.

The proof is by contradiction. Suppose that θ is point-identified. We will show that this

necessarily leads to φx1 = 0, which will contradict Lemma 2. To that end, we will first prove

via finite induction that φx1 must be a constant function.

For s ∈ {1, ..., T − 2}, let P(s) denote the statement that there exists a function

φT−sx1
: {0, 1}2T−2s−1 → R such that, for all yT ∈ {0, 1}T and x2:T ∈ {0, 1}T−1, we have

φx1(y
T , x2:T ) = φT−sx1

(yT−s, x2:T−s).

Base case:

By (10), the quantity

1∑
yT =0

φx1(y
T , x2:T )F (θxT + α)yT [1− F (θxT + α)]1−yT (A8)
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does not depend on xT . Hence

φx1(y
T−1, 1, x2:T−1, 1)F (θ + α) + φx1(y

T−1, 0, x2:T−1, 1)[1− F (θ + α)]

= φx1(y
T−1, 1, x2:T−1, 0)F (α) + φx1(y

T−1, 0, x2:T−1, 0)[1− F (α)].

By linear independence of 1, F (α), and F (θ + α), this implies that φx1(y
T , x2:T ) does not

depend on (yT , xT ). Hence P(1) is true.

Induction step

Suppose that P(s) is true for s ∈ {1, ..., T − 3}. Let us show that P(s+ 1) is true.

Since P(s) is true, we know that there exists a function φT−sx1
: {0, 1}2T−2s−1 → R

such that

φx1(y
T , x2:T ) = φT−sx1

(yT−s, x2:T−s).

Thus, by (10), the quantity:

∑
yT−s:T∈{0,1}s+1

φx1(y
T , x2:T )

T∏
t=T−s

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

yT−s=0

φT−sx1
(yT−s, x2:T−s)

∑
yT−(s−1):T∈{0,1}s

T∏
t=T−(s−1)

F (θxt + α)yt [1− F (θxt + α)]1−yt

× F (θxT−s + α)yT−s [1− F (θxT−s + α)]1−yT−s

=
1∑

yT−s=0

φT−sx1
(yT−s, x2:T−s)F (θxT−s + α)yT−s [1− F (θxT−s + α)]1−yT−s

does not depend on xT−s:T . Therefore,

φT−sx1
(yT−s−1, 1, x2:T−s−1, 1)F (θ + α) + φT−sx1

(yT−s−1, 0, x2:T−s−1, 1)[1− F (θ + α)]

= φT−sx1
(yT−s−1, 1, x2:T−s−1, 0)F (α) + φT−sx1

(yT−s−1, 0, x2:T−s−1, 0)[1− F (α)].

Since 1, F (α), and F (θ + α) are linearly independent, this implies P(s+ 1).

It follows from the previous induction argument that there exists a function φ2
x1

: {0, 1}3 → R
such that, for all (yT , x2:T ),

φx1(y
T , x2:T ) = φ2

x1
(y2, x2).
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Using (10), the quantity

∑
y2:T∈{0,1}T−1

φx1(y
T , x2:T )

T∏
t=2

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y2=0

φ2
x1

(y2, x2)F (θx2 + α)y2 [1− F (θx2 + α)]1−y2

does not depend on x2:T . Therefore,

φ2
x1

(y1, 1, 1)F (θ + α) + φ2
x1

(y1, 0, 1)[1− F (θ + α)]

= φ2
x1

(y1, 1, 0)F (α) + φ2
x1

(y1, 0, 0)[1− F (α)].

Since 1, F (α), and F (θ+α) are linearly independent, this implies that there exists a function

φ1
x1

: {0, 1} → R such that, for all (yT , x2:T ),

φx1(y
T , x2:T ) = φ1

x1
(y1).

Lastly, (11) implies

∑
yT∈{0,1}T

φx1(y
T , x2:T )

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
∑

yT∈{0,1}T
φ1
x1

(y1)
T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y1=0

φ1
x1

(y1)
∑

y2:T∈{0,1}T

T∏
t=1

F (θxt + α)yt [1− F (θxt + α)]1−yt

=
1∑

y1=0

φ1
x1

(y1)F (θx1 + α)y1 [1− F (θx1 + α)]1−y1

= 0.

Linear independence of 1, F (α), and F (θ + α) thus implies

φ1
x1

(0) = φ1
x1

(1) = 0.

Therefore, φx1 must be the null function, a contradiction.
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G Proof of Proposition 1

It is immediate to verify that, if θ̃ ∈ ΘI , then (16), (17) and (18) are satisfied.

Conversely, suppose that (16), (17) and (18) are satisfied. Let

px1(y
T , x2:T , α) = F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α). (A9)

Using (17) we have

px1(y
T , x2:T , α) ≥ 0,

∑
yT∈{0,1}T

∑
x2:T∈{0,1}T−1

∫
S
px1(y

T , x2:T , α)dµ(α) = 1,

so px1 is a valid distribution function (conditional on Xi1 = x1).

Next, using (16) we have∫
S
px1(y

T , x2:T , α)dµ(α)

=

∫
S
F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α)dµ(α)

= Qx1(y
T , x2:T ; θ, π,G),

so px1 is consistent with the conditional distribution Qx1(y
T , x2:T ; θ, π,G) of (Y T

i , X
2:T
i ) given

Xi1.

Next, using (18) we have, for all s ∈ {2, ..., T},∑
xs:T∈{0,1}T−s+1

∑
ys:T∈{0,1}T−s+1

px1(y
T , x2:T , α)

=
∑

xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

{
1∑

yT =0

F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yT

}
ψx1(x

2:T , yT−1, α)

=
∑

xs:T∈{0,1}T−s+1

∑
ys:T−1∈{0,1}T−s

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T−1∈{0,1}T−s+1

ψx1(x
2:T , yT−1, α)

= F (θ̃xs−1 + α)ys−1 [1− F (θ̃xs−1 + α)]1−ys−1

∑
xs:T∈{0,1}T−s+1

∑
ys−1:T∈{0,1}T−s+2

px1(x
2:T , yT , α),

so, for all t ∈ {1, ..., T −1}, the conditional distributions of Yit given (Y t−1
i , X t−1

i , αi) induced

by px1 coincide with the ones under the model; i.e., with F (θ̃xt + α)yt [1− F (θ̃xt + α)]1−yt .
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Lastly, using (A9) we have

px1(y
T , x2:T , α) = F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yTψx1(x

2:T , yT−1, α)

= F (θ̃xT + α)yT [1− F (θ̃xT + α)]1−yT
1∑

yT =0

px1(y
T , x2:T , α),

so the conditional distribution of YiT given (Y T−1
i , XT−1

i , αi) induced by px1 also coincides

with the one under the model.

This implies that θ̃ ∈ ΘI .

H Computation of identified sets

In this section we describe the practical implementation of the linear programming approach

for the computation of identified sets for two types of target parameters: θ, and average

partial effects. For simplicity of exposition we discuss the case T = 2, but the construction

is analogous for larger T .

H.1 Parameter θ

In Proposition 1, we established that a candidate parameter θ̃ lies in the identified set ΘI

if and only if one can find functions ψ0, ψ1 verifying equations (13), (14) and (15). A useful

observation is that these conditions can be viewed as the constraints of a linear program.

Thus, determining whether θ̃ ∈ ΘI is equivalent to determining the feasibility of a linear

optimization problem. In the numerical illustration, we specifically consider:

inf
ψ0,ψ1

∫
S

1∑
x1=0

qx1

1∑
x2=0

1∑
y1=0

ψx1(x2, y1, α)dµ(α),

where the constraints are that ψ0, ψ1 satisfy equations (13), (14) and (15). The additional

constraints for the strictly exogenous case are that ψ0, ψ1 also verify the relationship presented

in footnote 5.
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H.2 Average partial effect ∆

In addition to θ, a quantity of interest is the average partial effect

∆ = E[Pr(Yi2 = 1 |Xi2 = 1, αi)− Pr(Yi2 = 1 |Xi2 = 0, αi)]

=

∫
S
[F (θ + α)− F (α)]

∑
x1∈{0,1}

qx1πx1(α)dµ(α).

which is generally not point-identified. Yet, for a given θ̃ ∈ ΘI , one can compute a lower

bound ∆(θ̃) and an upper bound ∆(θ̃) on the range of possible average partial effects as

solutions to the following linear optimization problem:

∆(θ̃) = inf
ψ0,ψ1

∫
S
[F (θ̃ + α)− F (α)]

∑
x1∈{0,1}

qx1
∑

x2∈{0,1}

∑
y1∈{0,1}

ψx1(x2, y1, α)dµ(α),

∆(θ̃) = sup
ψ0,ψ1

∫
S
[F (θ̃ + α)− F (α)]

∑
x1∈{0,1}

qx1
∑

x2∈{0,1}

∑
y1∈{0,1}

ψx1(x2, y1, α)dµ(α),

subject to ψ0, ψ1 satisfying equations (15), (13), and (14). Under the assumption of strict

exogeneity, ψ0 and ψ1 have to satisfy the additional constraint discussed in footnote 5. The

sharp bounds for ∆ are then obtained as

∆ = inf
θ̃∈ΘI

∆(θ̃),

∆ = sup
θ̃∈ΘI

∆(θ̃).
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Figure 1: Approximate identified sets for logit and probit models with T = 2
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Notes: Approximate upper and lower bounds of the identified set ΘI in a logit model (left column) and a probit

model (right column) with T = 2 based on a discretization of unobserved heterogeneity with K = 5, 50, 500

support points respectively. The true identified set is depicted by the solid lines while the approximations are

indicated by the dashed lines. The population value of θ is given on the x-axis.
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Figure 2: Approximate identified sets for average partial effects in logit and probit models
with T = 2
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Notes: Approximate upper and lower bounds of the identified set for average partial effects in a logit model

(left column) and a probit model (right column) with T = 2 using a discretization of unobserved heterogeneity

with K = 5, 50, 500 support points respectively. The true identified set is depicted by the solid lines while the

approximations are indicated by the dashed lines. The population value is given on the x-axis.
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