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Abstract

This paper deals with estimation of dynamic discrete choice models. Specifically, we introduce an

algebraic approach to derive identifying moments in dynamic logit models with strictly exogenous regres-

sors and additive fixed effects. It is based upon two common features in this class of models. First, many

(individual-specific) transition probabilities can be expressed as conditional expectations of functions of

the data and common parameters given the initial condition, the regressors and the fixed effects. We call

such functions transition functions. Second, after enough time periods, multiple transition functions map

to the same transition probabilities. This motivates a differencing strategy leveraging the multiplicity

of transition functions to produce valid moment conditions in panels of adequate length. We detail the

construction of identifying moments in scalar models of arbitrary lag order as well as first-order panel

vector autoregressions and dynamic multinomial logit models. A simulation study illustrates the small

sample performance of GMM estimators based on our methodology.

1 Introduction

In panel data, the availability of multiple observations per sampling unit introduces the possibility to control

for unobserved heterogeneity and dynamic feedback. This feature is paramount to discern the nature of

causality in a wide range of economic processes. A prominent example that motivates our study is dynamic

discrete choice analysis. Here, the main concern is disentangling “true state dependence”, i.e the causal effect

of past choices on current outcomes, from spurious correlation induced by unit-specific effects (Heckman

(1981)). However, achieving this objective in short panels for nonlinear models is notoriously difficult. The

combination of dynamic feedback and individual fixed effects typically leads to estimation challenges due in

part to the incidental parameter problem (Neyman and Scott (1948)). There are a few notable exceptions
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however for which solutions to the incidental parameter problem exist (Arellano and Honoré (2001) provides

a review of some known examples). In the context of dynamic discrete choice, dynamic fixed effects logit

(DFEL) models, the focus of the present paper, constitute one such exception.

In the “pure” version of the basic model which abstract from covariates other than a first order lag, Cox

(1958), Chamberlain (1985) and Magnac (2000) showed that the autoregressive parameter can be consistently

estimated by conditional likelihood. This approach relies on the existence of a sufficient statistic linked to the

logistic assumption to eliminate the fixed effect. In an important subsequent paper, Honoré and Kyriazidou

(2000) extend this idea to a setting with strictly exogenous regressors and show that the conditional likelihood

approach remains viable if one can further condition on the regressors being equal in specific periods. This

strategy was also found to be effective in dynamic multinomial logit models (Honoré and Kyriazidou (2000)),

panel vector autoregressions (Honoré and Kyriazidou (2019)) and dynamic ordered logit models (Muris et al.

(2020). At the same time, it has also been noted that the necessity to be able to “match” the covariates

imposes two limitations for the conditional likelihood approach: it inherently rules out time effects and

implies rates of convergence slower than
√
N for continuous explanatory variables. Furthermore, calculations

from Honoré and Kyriazidou (2000) suggested that it does not easily extend to models with a higher lag

order. These undesirable features have encouraged the development of alternative and more flexible methods

of estimation.

Recently, Kitazawa et al. (2013, 2016) and Kitazawa (2022) revisited the AR(1) logit model - autoregressive

of order one - and proposed a transformation approach that deals with the fixed effects without restricting

the nature of the covariates besides the conventional assumption of strict exogeneity. Their methodology

effectively leads to moment conditions that can serve as a basis to estimate the model parameters at
√
N -

rate by GMM; even with continuous regressors. In independent work, Honoré and Weidner (2020) also

derived moment conditions for the AR(1), AR(2) and AR(3) logit models in panels of specific length using

the functional differencing technique of Bonhomme (2012). Their approach is partly numerical and requires

softwares such as Mathematica to obtain analytical expressions but has a wider scope of applications, e.g

dynamic ordered logit specifications (Honoré et al. (2021)). In another recent paper, Dobronyi et al. (2021),

the authors analyze the full likelihood of AR(1) and AR(2) logit models with discrete covariates under a

new angle that reveals a connection to the truncated moment problem in mathematics. Drawing on well

established results in that literature, they derive moment equality and moment inequality restrictions -

previously unexploited - that fully characterize the sharp identified set.

In this paper, we contribute to this growing body of research by introducing a new algebraic approach to

construct moment equality conditions in DFEL models with additive separability between the fixed effects

and the explanatory variables (i.e when fixed effects are heterogeneous “intercepts”). This class of models

encompasses most specifications studied in prior work but excludes models with heterogeneous coefficients

on lagged outcomes and/or regressors as in Chamberlain (1985) and Browning and Carro (2014). We focus

our attention on deriving valid moment functions for AR(p) models with arbitrary lag order p ≥ 1 as well as
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first-order panel vector autoregressions and dynamic multinomial logit models (Magnac (2000)). At the heart

of our methodology lie two key observations. First, the transition probabilities of logit type models can often

be expressed as conditional expectations of functions of observables and common parameters given the initial

condition, the regressors and the fixed effects. We refer to these moment functions as transition functions.

They have the convenient feature of not depending on individual fixed effects. Second and crucially, as soon

as T ≥ p+2, where T denotes the number of observations post initial condition, many transition probabilities

in periods t ∈ {p+1, . . . , T −1} are associated to at least two distinct transition functions. Consequently, the

econometrician can generate valid moment functions from differences between any two transition functions

associated to the same transition probability in panels of adequate length. We elaborate on this process

in various examples and use the resulting moment functions to document novel identification results and

shed a new light on existing ones. In contrast to Honoré and Weidner (2020) and Dobronyi et al. (2021),

the proposed methodology does not rely on solving directly a system of equations based on the model full

likelihood and hence scales relatively well with model complexity, i.e T , p or the dimensionality of the fixed

effects.

Our work also connects to a line of research studying the identification of features of the distribution

of fixed effects in discrete choice models. One branch in this literature has focused on developing general

optimization tools to compute sharp numerical bounds on average marginal effects. This includes most

notably, the linear programming method of Honoré and Tamer (2006) and the quadratic programming method

of Chernozhukov et al. (2013). A second branch in this literature has focused instead on harnessing the

specificities of logit models to obtain simple analytical bounds. In static logit models, Davezies et al. (2021)

exploit mathematical results on the moment problem to formulate sharp bounds on the average partial effects

of regressors on outcomes. In DFEL models, Aguirregabiria and Carro (2021) are the first to prove the point

identification of average marginal effects in the baseline AR(1) logit model when T ≥ 3. In related work,

Dobronyi et al. (2021) make use of their moment equality and moment inequality restrictions to establish

sharp bounds on functionals of the fixed effects such as average marginal effects and average posterior means

in AR(1) and AR(2) specifications. We complement these results as a byproduct of our methodology: average

marginal effects in AR(p) models, with arbitrary p ≥ 1 and T ≥ 2+p are merely expectations of our transition

functions.

The remainder of the paper is organized as follows. Section 2 presents the setting, our working assumptions

and states our main objective. Section 3 introduces some terminology and gives an outline of our methodology

to construct moment conditions. Section 4 implements our approach in AR(1) and AR(p) logit models

with p > 1 and discusses identification of the model parameters and average marginal effects. Section 5

gives moment conditions in the VAR(1) and the dynamic multinomial logit model with one lag, henceforth

MAR(1). Finally, Section 6 documents the finite sample performance of GMM estimators based on our

moment conditions in Monte Carlo simulations. Unless stated otherwise, proofs of the main results are

gathered in the Appendix.
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2 Setting

Let i = 1, . . . , N denote a population index and t = 0, . . . , T an index for time. This paper studies threshold-

crossing type models describing a discrete outcome Yit through a latent variable involving lagged outcomes

(e.g Yit−1), regressors Xit, an individual-specific time-invariant unobservable Ai and a schock ϵit. We focus

our attention on models where Ai is additively separable from the other explanatory variables. An initial

condition Y 0
i comes with each model to allow for dynamics. The common parameter θ0 is the target of

interest and governs the influence of lagged outcomes and the regressors on the contemporaneous outcome.

Throughout, we assume that the joint distribution of (Y 0
i , Xi, Ai) is unrestricted where Xi = (Xi1, . . . , XiT )

and thus refer to Ai as a fixed effect in common with the literature. Finally, ϵit are assumed to be serially

independent logistic shocks, independent of (Y 0
i , Xi, Ai) and independent across individuals, except for the

MAR(1) model where they are instead extreme value distributed.

The data available to the econometrician consists of the initial condition Y 0
i , the outcome vector Yi =

(Yi1, . . . , YiT ), and the covariates Xi. Interest centers on the identification and estimation of the structural

parameter θ0 in short panels, i.e for fixed T . To this end, the chief objective of this paper is to show how to

construct moment functions ψθ(Yi, Y
0
i , Xi) free of the fixed effect parameter that are valid in the sense that:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi, Ai

]
= 0 (1)

When this is possible, the law of iterated expectations implies the conditional moment:

E
[
ψθ0(Yi, Y

0
i , Xi) |Y 0

i , Xi

]
= 0

which can in turn be leveraged to assess the identifiability of θ0 and form the basis of a GMM estimation

strategy. This is the central idea underlying functional differencing (Bonhomme (2012)) and was applied by

Honoré and Weidner (2020) to derive valid moment conditions for a class of dynamic logit models with scalar

fixed effects. We borrow the same insight but instead of searching for solutions numerically as Honoré and

Weidner (2020) do, we propose a complementary and systematic algebraic approach to recover the model’s

valid moments 1. Proceeding in this way has the advantage to shed light on the mechanics implied by the

logistic assumption which in turn suggest a blueprint to deal with estimation of general DFEL models. For

instance, we are able to characterize the expressions of valid moment functions in AR(p) models for arbitrary

p > 1 which to the best of our knowledge is a new result in the literature. Moreover, our approach easily

carries over to multidimensional fixed effect specifications: VAR(1), dynamic network formation models and

the MAR(1) in which searching for moments numerically is cumbersome or intractable.

A brief word on notations. Henceforth, we will use the shorthands, Y t2
it1

= (Yit1 , . . . , Yit2) to denote a

collection of random variables over periods t1 to t2 with the convention that Y t2
it1

= ∅ if t1 > t2. In a

1Dobronyi et al. (2021) and Kitazawa (2022) also have an algebraic approach but our methodologies are very different. The
first paper uses the full likelihood of the model and focuses on the AR(1) and special instances of the AR(2) model. The second
paper has a transformation approach adapted to the AR(1) model.
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similar spirit, we may use the notation yp1 = (y1, . . . , yp) to denote any p-dimensional vector of reals with the

convention yt2t1 = ∅ for t1 > t2. We let ∆ denote the first-differencing operator so that ∆Zit = Zit − Zit−1

for any random variable Zit and make use of the notation Zits = Zit − Zis for s ̸= t to accomodate long

differences. Last, 1{.} denotes the indicator function. For notational convenience, the conventional zero

subscript on the common parameters may at times be omitted in the main text and the proofs when doing

so causes no confusion.

3 Outline of an algebraic approach to derive valid moment func-

tions

Throughout, we let Y denote the support of the outcome of interest Yit. Given an initial condition y0 ∈ Yp,

p ≥ 1 referring to the lag order of the model, and regressors Xi ∈ RKx×T , we denote the (one-period ahead)

transition probability in period t ≥ 1 from state (lt1, y
0) ∈ Yt × Yp to state k ∈ Y as:

π
k|lt1,y

0

t (Ai, Xi) = π
k|lt1,y

0

t (Ai, Xi; θ0) ≡ P (Yit+1 = k | Y 0
i = y0, Y t

i1 = lt1, Xi, Ai)

The Markovian structure of the models considered in this paper imply that π
k|lt1,y

0

t (Ai, Xi) does not depend

on the entire path of past outcomes but rather on the value of the most recent p outcomes. For instance, in

an AR(1) model where p = 1, we have:

π
k|lt1,y

0

t (Ai, Xi) = P (Yit+1 = k | Y 0
i = y0, Y t

i1 = lt1, Xi, Ai) = P (Yit+1 = k | Yit = lt, Xi, Ai)

and thus we will suppress the dependence on (y0, l1, . . . , lt−1) and write π
k|lt
t (Ai, Xi). We proceed analogously

for models with higher order lags.

We call a transition function associated to a transition probability π
k|lt1,y

0

t (Ai, Xi) any moment function

ϕ
k|lt1,y

0

θ (Yi, Xi) of the data and the common parameters verifying:

E

[
ϕ
k|lt1,y0

θ0
(Yi, Xi) |Y 0

i , Xi, Ai

]
= π

k|lt1,y0

t (Ai, Xi) (2)

Our proposed approach to derive valid moment functions in the sense of equation (1) consists of two steps

independently of the number of lags and the dimensionality of individual fixed effects. In Step 1), we compute

the model’s transition functions. Our procedure requires a minimum of T = p + 1 periods of observations

to accommodate arbitrary regressors and initial condition. In this case we can produce transition functions

associated to the transition probabilities in period t = p and Theorem 2 implies that they are unique.

However, as soon as T ≥ p + 2, we show that it becomes possible to construct distinct transition functions

associated to the same transition probabilities in periods t ∈ {p + 1, . . . , T − 1}. This opens the door for a

differencing strategy leading to valid moment functions that we refer to as Step 2).

Step 1) is unsurprisingly easiest with a single lag and we spend much time discussing this foundational

case. For AR(p) logit models with p > 1, the computation of transition functions is more involved due
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to the presence of higher order lags. An important and novel contribution of this paper is to provide a

general algorithm to fulfill this objective. Another contribution is to show how to construct sequences of

transition functions to achieve Step 2) when a sufficient number of time periods is available. To do so we

build on ideas from Kitazawa (2022). The ensuing sections demonstrate our two-step approach in scalar and

multidimensional fixed effect models.

4 Scalar fixed effect models

4.1 Moment conditions for the AR(1) logit model

For exposition, we begin with the baseline AR(1) logit model with fixed effects often formulated as:

Yit = 1{γ0Yit−1 +X ′
itβ0 +Ai − ϵit ≥ 0}, t = 1, . . . , T (3)

Here, Y = {0, 1}, θ0 = (γ0, β
′
0) ∈ R × RKx , the initial condition Y 0

i consists of the binary-valued random

variable Yi0 and Ai ∈ R.

4.1.1 The purely autoregressive case

In the absence of exogenous regressors, model (3) simplifies to:

Yit = 1{γ0Yit−1 +Ai − ϵit ≥ 0}, t = 1, . . . , T (4)

which was first introduced by Cox (1958) and then revisited in Chamberlain (1985), Magnac (2000). These

papers established the identification of γ0 for T ≥ 3 via conditional likelihood based on the insight that

(Yi0,
∑T−1

t=1 Yit, YiT ) are sufficient statistics for the fixed effect. As discussed in Section 2, our methodology

is conceptually different as we seek to directly construct moment functions verifying equation (1).

For this model, the individual-specific transition probability from state l to state k is time-invariant and

given by:

πk|l(Ai) = P (Yit+1 = k|Yit = l, Ai) =
ek(γ0l+Ai)

1 + eγ0l+Ai
, ∀(l, k) ∈ Y

In Step 1), we focus on deriving the transition functions associated to π0|0(Ai) and π
1|1(Ai). The other two

transition probabilities π1|0(Ai) and π
0|1(Ai) are effectively redundant since probabilities sum to one. To do

so, our proposal is to look for moment functions of the form ϕθ(Yit+1, Yit, Yit−1) that: 1) are non-zero only

for a single realization of the period t outcome and 2) have a conditional expectation given past outcomes

and the fixed effect equal to one of the two target transition probabilities. Formally, we search for ϕ
0|0
θ (.) and
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ϕ
1|1
θ (.), functions of three consecutive outcomes, satisfying

ϕ
0|0
θ (Yit+1, Yit, Yit−1) = (1− Yit)ϕ

0|0
θ (Yit+1, 0, Yit−1)

ϕ
1|1
θ (Yit+1, Yit, Yit−1) = Yitϕ

1|1
θ (Yit+1, 1, Yit−1)

E
[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1) | Yi0, Y t−1
i1 , Ai

]
= π0|0(Ai)

E
[
ϕ
1|1
θ0

(Yit+1, Yit, Yit−1) | Yi0, Y t−1
i1 , Ai

]
= π1|1(Ai)

Their expressions are simple and provided in Lemma 1 below.

Lemma 1. In model (4) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1) = (1− Yit)e

γYit+1Yit−1

ϕ
1|1
θ (Yit+1, Yit, Yit−1) = Yite

γ(1−Yit+1)(1−Yit−1)

Then:

E
[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1)|Yi0, Y t−1
i1 , Ai

]
= π0|0(Ai) =

1

1 + eAi

E
[
ϕ
1|1
θ0

(Yit+1, Yit, Yit−1)|Yi0, Y t−1
i1 , Ai

]
= π1|1(Ai) =

eγ0+Ai

1 + eγ0+Ai

The proof is omitted as it is a special instance of Lemma 2 which covers the case with strictly exogenous

explanatory variables.

One heuristic motivation for searching transition functions of this form is the following. In model (4),

a key idea to obtain moment restrictions is to look for an intermediate function ϕθ(Yit+1, Yit, Yit−1) whose

conditional expectation given past outcomes and fixed effect does not depend on the past when evaluated

at the true parameter 2. Indeed, if this is somehow achievable, the difference of ϕθ(Yit+1, Yit, Yit−1) and

ϕθ(Yis+1, Yis, Yis−1) for t > s provides a natural candidate for a valid moment function. To operationalize

this idea, we first note that we can generically write,

E
[
ϕθ(Yit+1, Yit, Yit−1) | Yi0 = y0, Y

t−1
i1 = yt−1

1 , Ai = a
]
=

1∑
yt+1=0

1∑
yt=0

P (Yit+1 = yt+1|Yit = yt, Ai = a)P (Yit = yt|Yit−1 = yt−1, Ai = a)ϕθ(yt+1, yt, yt−1)

=
eγ0yt−1+a

1 + eγ0yt−1+a

(
eγ0+a

1 + eγ0+a
ϕθ(1, 1, yt−1) +

1

1 + eγ0+a
ϕθ(0, 1, yt−1)

)

+
1

1 + eγ0yt−1+a

(
ea

1 + ea
ϕθ(1, 0, yt−1) +

1

1 + ea
ϕθ(0, 0, yt−1)

)
Then, the hope is that we can select, ϕθ(1, 1, yt−1), ϕθ(0, 1, yt−1), ϕθ(1, 0, yt−1) and ϕθ(0, 0, yt−1) in such a way

that the above conditional expectation does not involve yt−1. An appropriate guess of these four unkowns

2It is not difficult to see that this strategy is inapplicable with functions of two consecutive outcomes so considering functions
of three consecutive outcomes is the next logical progression.
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can certainly be made for the pure AR(1) case but it is arguably less immediate in multivariate specifications,

especially when the support of the outcome variable is large. The particular form that we impose on ϕθ(.)

may be interpreted as a device to reduce the complexity of the problem by requiring us to solve only for |Y|

unkowns (here two) instead of |Y|2 (here four). As an illustration, the proposed function ϕ
0|0
θ (Yit+1, Yit, Yit−1)

which is null if Yit ̸= 0 satisfies:

E
[
ϕ
0|0
θ (Yit+1, Yit, Yit−1) | Yi0 = y0, Y

t−1
i1 = yt−1

1 , Ai = a
]
=

1

1 + eγ0yt−1+a

(
ea

1 + ea
ϕ
0|0
θ (1, 0, yt−1) +

1

1 + ea
ϕ
0|0
θ (0, 0, yt−1)

)
Now, this expression makes it transparent that the only way to make the moment invariant to the value of

yt−1 is to choose ϕ
0|0
θ (1, 0, yt−1) and ϕ

0|0
θ (0, 0, yt−1) to cancel the denominator 1+ eγ0yt−1+a. To achieve this,

we must set: ϕ
0|0
θ0

(1, 0, yt−1) = C0e
γ0yt−1 , ϕ

0|0
θ0

(0, 0, yt−1) = C0 for some constant C0 ∈ R \ {0}. Then,

E
[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1)|Yi0 = y0, Y
t−1
i1 = yt−1

1 , Ai = a
]
= C0

1

1 + ea

C0 = 1 is the appropriate normalization to establish the connection between the function ϕ
0|0
θ (.) and the

agent specific transition probability π0|0(Ai). Of course, the same logic applies for ϕ
1|1
θ (.) and π1|1(Ai).

Remark 1. Interestingly, Lemma 1 is a reformulation of results first shown by Kitazawa et al. (2013, 2016),

Kitazawa (2022), albeit in a different way than the calculations displayed above. To see this, note that we

can equivalently express the transition functions in Lemma 1 as:

ϕ
0|0
θ (Yit+1, Yit, Yit−1) = (eγ − 1)Yit+1(1− Yit)Yit−1 + (1− Yit)

ϕ
1|1
θ (Yit+1, Yit, Yit−1) = (eγ − 1)(1− Yit+1)Yit(1− Yit−1) + Yit

After re-arranging terms, this implies that we can write:

Yit = (eγ0 − 1)Yit+1(1− Yit)Yit−1 +
eAi

1 + eAi
+ ϵ

0|0
it , E

[
ϵ
0|0
it |Yi0, Y t−1

i1 , Ai

]
= 0

Yit = −(eγ0 − 1)(1− Yit+1)Yit(1− Yit−1) +
eγ0+Ai

1 + eγ0+Ai
+ ϵ

1|1
it , E

[
ϵ
1|1
it |Yi0, Y t−1

i1 , Ai

]
= 0

These expressions coincide with the so-called h-form and g-form of Kitazawa (2022) for model (4).

We can now proceed with Step 2) where the ultimate goal is to leverage the transition functions to

produce valid moment functions. Echoing the discussion above, one trivial way to achieve this is to consider

the pairwise difference of ϕ
k|k
θ (Yit+1, Yit, Yit−1) and ϕ

k|k
θ (Yis+1, Yis, Yis−1) for any feasible s ̸= t. This requires

a minimum of four total periods of observations, counting the initial condition. Such differences automatically

satisfy equation (1) by virtue of the law of iterated expectations (see the proof of Proposition 1).

Proposition 1. In model (4) with T ≥ 3, let

ψ
k|k
θ (Y t+1

it−1, Y
s+1
is−1) = ϕ

k|k
θ (Yit+1, Yit, Yit−1)− ϕ

k|k
θ (Yis+1, Yis, Yis−1)
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for all k ∈ Y, t ∈ {2, . . . , T − 1} and s ∈ {1, . . . , t− 1}. Then,

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s+1
is−1)|Yi0, Y

s−1
i1 , Ai

]
= 0

4.1.2 The model with strictly exogenous regressors

We move on to the AR(1) logit model with strictly exogenous covariates characterized by equation (3). To

achieve Step 1), we employ the same heuristic as in the pure model and begin by looking for two moment

functions ϕ
0|0
θ (.) and ϕ

1|1
θ (.) verifying:

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)ϕ

0|0
θ (Yit+1, 0, Yit−1, Xi)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yitϕ

1|1
θ (Yit+1, 1, Yit−1, Xi)

E
[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi)

E
[
ϕ
1|1
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi)

where π
k|l
t (Ai, Xi) denotes the transition probability from state l to state k in period t:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l,Xi, Ai) = P (Yit+1 = k|Yit = l,Xit+1, Ai) =

ek(γ0l+X′
it+1β0+Ai)

1 + eγ0l+X′
it+1β0+Ai

, ∀(k, l) ∈ Y2

Their expressions are provided in Lemma 2 and can be obtained following the same simple procedure described

in the preceding section to derive ϕ
0|0
θ (.) without exogenous regressors.

Lemma 2. In model (3) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

Yit+1(γYit−1−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+∆X′
it+1β)

Then:

E
[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi) =

1

1 + eAi+X′
it+1β0

E
[
ϕ
1|1
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi) =

eγ0+X′
it+1β0+Ai

1 + eγ0+X′
it+1β0+Ai

Unlike in model (4), the covariate dependence of the transition probabilities will generally imply that the

naive difference of ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) and ϕ

k|k
θ (Yis+1, Yis, Yis−1, Xi) for k ∈ Y and s ̸= t no longer leads

to valid moment functions 3. Thus, a different technique is required in the presence of explanatory variables

other than a first order lag.

The key, as foreshadowed in Section 3 is that as soon as T ≥ 3, for periods t ∈ {2, . . . , T −1}, it is possible

to construct transition functions other than ϕ
k|k
θ (Y t+1

it−1, Xi) also associated to π
k|k
t (Ai, Xi), for k ∈ Y. These

alternative transition functions that we denote ζ
k|k
θ (.) take the form of a weighted combination of past

3A matching strategy in the spirit of Honoré and Kyriazidou (2000) may still be applicable but is known to lead to estimators
converging at rate less than

√
N for continous covariates and rules out certain regressors, e.g time dummies and time trends.
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outcome 1(Yis = k), 1 ≤ s < t, and the interaction of 1(Yis ̸= k) with any transition function associated

to π
k|k
t (Ai, Xi) having no dependence on outcomes prior to period s, e.g ϕ

k|k
θ (Y t+1

it−1, Xi). This property

follows from a partial fraction decomposition presented in Lemma 9 that exploits the structure of the model

probabilities induced by the logistic assumption. It also relates to the hyperbolic transformations ideas of

Kitazawa (2022). In the sequel, we will see that this insight carries over to more complex specifications like

the AR(p) logit model with p > 1. Lemma 3 below gives the “simplest” additional transition functions that

one can construct when T ≥ 3 for the AR(1) model with exogenous regressors (the only ones when T = 3).

Lemma 3. In model (3) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let:

µs(θ) = γYis−1 +X ′
isβ

κ
0|0
t (θ) = X ′

it+1β, κ
1|1
t (θ) = γ +X ′

it+1β

ω
0|0
t,s (θ) = 1− e(κ

0|0
t (θ)−µs(θ)), ω

1|1
t,s (θ) = 1− e−(κ

1|1
t (θ)−µs(θ))

and define the moment functions:

ζ
0|0
θ (Y t+1

it−1, Y
s
is−1, Xi) = (1− Yis) + ω

0|0
t,s (θ)Yisϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s
is−1, Xi) = Yis + ω

1|1
t,s (θ)(1− Yis)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

Then,

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

0|0
t (Ai, Xi) =

1

1 + eX
′
it+1β0+Ai

E
[
ζ
1|1
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

1|1
t (Ai, Xi) =

eγ0+X′
it+1β0+Ai

1 + eγ0+X′
it+1β0+Ai

When T ≥ 4, it turns out that we can build even more transition functions from those given in Lemma 3 by

repeating the same type of logic; Corollary 3.1 provides a recursive formulation.

Corollary 3.1. In model (3) with T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying

T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let

ζ
0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = (1− YisJ ) + ω

0|0
t,sJ (θ)YisJ ζ

0|0
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

ζ
1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = YisJ + ω

1|1
t,sJ (θ)(1− YisJ )ζ

1|1
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

with weights ω
0|0
t,sJ (θ), ω

1|1
t,sJ (θ) defined as in Lemma 3. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi), ∀k ∈ Y

The proof is similar to that of Lemma 3 and hence omitted.

Regarding Step 2), provided T ≥ 3, the difference between any transition functions associated to the same

transition probabilities in periods t ∈ {2, . . . , T − 1} constitutes a valid candidate for (1). One particularly

relevant set of valid moment functions is presented in Proposition 2 below.
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Proposition 2. In model (3), for all k ∈ Y,

if T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1 , let

ψ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi),

if T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let

ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = ϕ

k|k
θ (Y t+1

it−1, Xi)− ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi),

Then,

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= 0

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= 0

Note that this family of moment functions has cardinality 2T − 2T which coincides with the number

of linearly independent moments that Honoré and Weidner (2020) found numerically for the AR(1) model

for any initial condition Yi0
4. To see this, notice that for fixed (k, Yi0) ∈ Y2, and a given time period

t ∈ {2, . . . , T − 1}, Proposition 2 gives a total of:

t−1∑
l=1

(
t− 1

l

)
= 2t−1 − 1

valid moment functions. This follows from a simple counting argument. First, we get
(
t−1
1

)
possibili-

ties from choosing any s in {1, . . . , t − 1} to form ψ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi). To that, we must add another∑t−1

l=2

(
t−1
l

)
possibilities from choosing all feasible sequences sJ1 with t− 1 ≥ s1 > s2 > . . . > sJ ≥ 1 to form

ψ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi). Summing over t = 2, . . . , T − 1 and multiplying by 2 to account for the

two possible values for k delivers the result:

2×
T−1∑
t=2

t−1∑
l=1

(
t− 1

l

)
= 2×

T−1∑
t=2

(2t−1 − 1) = 2×

(
2
1− 2T−2

1− 2
− (T − 2)

)
= 2(2T−1 − T ) = 2T − 2T

For T = 3, the two valid moment functions produced by the model depend on two distinct sets of choice

histories so are indeed linearly independent. This can be seen from their unpacked expressions in equations

(13) and (14). Unfortunately, this argument does not carry over to longer panels but we have verified

numerically that the linear independence property of this family continues to hold for several different values

of T ≥ 4. This suggests that our approach delivers all the moment equality restrictions available in the AR(1)

model with T periods post initial condition 5.

4Dobronyi et al. (2021) proved this conjecture for the AR(1) model using a likelihood approach.
5This is not all the identifying content of the AR(1) specification since we know from Dobronyi et al. (2021) that the model

also implies moment inequality conditions.
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Remark 2. The transition functions and valid moment functions of the AR(1) model share a special sym-

metry property. Indeed, it is immediate that the transition functions of Lemma 2 verify

ϕ
0|0
θ (1− Yit+1, 1− Yit, 1− Yit−1,−Xi) = ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

It is then not difficult to see that this symmetry, i.e substituting Yit by (1− Yit) and Xit by −Xit to obtain

ϕ
1|1
θ (Y t+1

it−1, Xi) from ϕ
0|0
θ (Y t+1

it−1, Xi) transfers to the other transition functions of Lemma 3, Corollary 3.1 and

ultimately to the valid moment functions of Proposition 2.

Remark 3. If γ0 = 0, model (3) specializes to the static panel logit model of Rasch (1960) and our two-step

approach is still applicable. For that specific case, Lemma 2 gives two moment functions:

ϕ0θ(Yi2, Yi1, Xi1, Xi2) = (1− Y1)e
−Yi2∆X′

2β

ϕ1θ(Yi2, Yi1, Xi1, Xi2) = Yi1e
(1−Y2)∆X′

i2β

such that E
[
ϕ0θ0(Yi2, Yi1, Xi1, Xi2)|Xi, Ai

]
= 1

1+eX
′
i2

β0+Ai
and E

[
ϕ1θ0(Yi2, Yi1, Xi1, Xi2)|Xi, Ai

]
=

eX
′
i2β0+Ai

1+eX
′
i2

β0+Ai
. It follows that a valid moment function with two periods of observation is

ψθ(Yi2, Yi1, Xi1, Xi2) = ϕ1θ(Yi2, Yi1, Xi1, Xi2)− (1− ϕ0θ(Yi2, Yi1, Xi1, Xi2))

= (1− e−∆X′
i2β)

(
Yi1(1− Yi2)e

∆X′
i2β − (1− Yi1)Yi2

)
which is proportional to the score of the conditional likelihood based on the sufficient statistic Yi1 + Yi2 (see

for example Bonhomme (2012), equation (21)).

Remark 4. The methodology developed in this section will apply more generally to models where Ai is

additively separable from the other explanatory variables. That is,

Yit = 1
{
g(Yit−1, Xit, θ0) +Ai − ϵit ≥ 0

}
, t = 1, . . . , T

where g(.) is known up to the common parameter θ0. This means that interactions between Yit−1 and Xit

can be included as regressors without any fundamental changes.

4.2 Simple application to an AR(1) logit with a time dummy

The AR(1) model with time dummies is one of the prototypical examples where the matching strategy of

Honoré and Kyriazidou (2000) fails to apply. In this type of situations, the moment conditions of Proposition

2 become instrumental and can even point identify the model parameters under certain conditions. To

illustrate this point concretely, consider specification (3) with Xit = 1{t = 2}, for all t ∈ {1, . . . , T};

reflecting an instance where the econometrician may want to control for the effect of a particular period due

perhaps to a one-off policy. This toy example has the purposeful feature that Xi2 is different from Xi3 so as

to invalidate the conditional likelihood approach.
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With T = 3, Proposition 2 delivers two valid moment functions per initial condition. For Yi0 = 0, they

read :

ψ
0|0
θ (Y 3

i1, 0, Xi) = (eβ − 1)(1− Yi1)(1− Yi2)Yi3 + eβ+γYi1(1− Yi2)Yi3 + Yi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

(5)

ψ
1|1
θ (Y 3

i1, 0, Xi) = (e−β − 1)Yi1Yi2(1− Yi3) + e−β(1− Yi1)Yi2(1− Yi3) + e−γ(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

(6)

whereas their symmetric counterpart for Yi0 = 1 are 6:

ψ
0|0
θ (Y 3

i1, 1, Xi) = (eβ − 1)(1− Yi1)(1− Yi2)Yi3 + eβYi1(1− Yi2)Yi3 + e−γYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

(7)

ψ
1|1
θ (Y 3

i1, 1, Xi) = (e−β − 1)Yi1Yi2(1− Yi3) + e−β+γ(1− Yi1)Yi2(1− Yi3) + (1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

(8)

Taken separately, (5)-(6) and (7)-(8) are in general not enough to point identify (γ0, β0) due to the possible

presence of a false root 7. This is shown in Figure 1 which plots the set of parameter values for which the

moment restrictions for Yi0 = 0 (left panel) and Yi0 = 1 (right panel) hold in an example data generating

process. Jointly however, they are sufficient to pin down the true parameter as we now demonstrate. It suffices

to take (appropriate) conditional expectations of (6) and (7) and recast the resulting moment restrictions as:

e−γ0 =
P0(1, 1, 0) + P0(1, 0)

P0(0, 1, 1)
− P0(1, 1, 0) + P0(0, 1, 0)

P0(0, 1, 1)
e−β0

e−γ0 =
P1(0, 0, 1) + P1(0, 1)

P1(1, 0, 0)
− P1(0, 0, 1) + P1(1, 0, 1)

P1(1, 0, 0)
eβ0

In the above expressions, we use the shorthands Py0(y1, . . . , ys) with s > 1 to denote the probability of

choice history (y1, . . . , ys) given the initial condition y0. Substracting off the second equation from the first

highlights that β0 is a root of the exponential polynomial

Q(β) =

(
P0(1, 1, 0) + P0(1, 0)

P0(0, 1, 1)
− P1(0, 0, 1) + P1(0, 1)

P1(1, 0, 0)

)
− P0(1, 1, 0) + P0(0, 1, 0)

P0(0, 1, 1)
e−β +

P1(0, 0, 1) + P1(1, 0, 1)

P1(1, 0, 0)
eβ

It is readily verified that Q(β) is strictly increasing on the real line with limβ→−∞Q(β) = −∞ and

limβ→+∞Q(β) = +∞. Thus, β0 must be its unique root. Since the informative moment conditions im-

plied by (5) and (8) were unexploited in this argument, we further conclude that the model parameters are

overidentified with T = 3 if there is variablity in the initial condition.

Hahn (2001) studied a more complex version with two time dummies and T = 3 wherein point iden-

tification based solely on moment equality conditions is not guaranteed even if both Yi0 = 0 and Yi0 = 1

6We refer the reader to equations (14) and (13) in Appendix Section E to see how these expressions can be obtained.
7It is possible to show that there are at most two roots for any initial condition and we leave this exercise to the reader.
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Figure 1: Roots of the two moment conditions for T = 3

(a) For Yi0 = 0
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(b) For Yi0 = 1

0.0 0.1 0.2 0.3 0.4 0.5

-0.5

0.0
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1.0

Notes: The DGP for this figure sets β0 = γ0 = 0.5 with Yi0 ∼iid Bernouilli( 1
2
), Ai ∼iid N (0, 1), Xit = 1{t = 2}

and ϵit iid standard logistic. The x-axis and y-axis represent the values for β and γ respectively. The solid black
lines in panel (a), respectively (b) depict the set of parameter values for which the moment conditions based on (5),
respectively (6) hold. Similarly, the dashed grey lines in panel (a), respectively (b) depict the set of parameter values
for which the moment conditions based on (7), respectively (8) hold. The blue cross indicates the correct root, i.e
(0.5,0.5) while the red cross indicates the false root.

are observed (Dobronyi et al. (2021)). In that case, for some data generating processes, harnessing moment

inequality conditions implied by the model likelihood may help restore point identification as shown by Do-

bronyi et al. (2021). The goal of our more stylized example is to plainly illustrate the usefulness of moment

conditions in a situation where conditional likelihood fails within the confines of the AR(1) logit model.

4.3 Average Marginal Effects in the AR(1) logit model

In discrete choice settings, interest often centers on functionals of unobserved heterogeneity rather than on the

value of the model parameters per se. One such functional of interest from a policy perspective is the average

marginal effects (AMEs) which capture mean response to a counterfactual change in past outcomes. In the

context of the AR(1) model, Aguirregabiria and Carro (2021) established that AMEs are point identified

given sufficient observations. We revisit their conclusions through the lens of our methodology and show how

these key quantities can trivially be computed from the model transition functions.

First, for the pure model described by equation (4), the average transition probability from state l to

state k for the initial condition y0 are defined as:

Πk|l(y0) = E
[
πk|l(Ai)|Yi0 = y0

]
=

∫
πk|l(a)p(a|y0)da, ∀(k, l) ∈ Y2

where p(a|y0) denotes the marginal probability of the fixed effect A given y0. The corresponding AME is the

following contrast of average transition probabilities:

AME(y0) = Π1|1(y0)−Π1|0(y0) = Π1|1(y0)− (1−Π0|0(y0))
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It is interpreted as the population average causal effect on Yit+1 of a change from 0 to 1 of Yit given y0. We

now make the useful observation that so long as T ≥ 2, for any t ≥ 1 we have by Lemma 1:

Π0|0(y0) = E
[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1)|Yi0 = y0

]
Π1|1(y0) = E

[
ϕ
1|1
θ0

(Yit+1, Yit, Yit−1)|Yi0 = y0

]
Given that γ0 is point identified for T ≥ 3, either by the moment conditions of Corollary 1 (see also Kitazawa

(2022)) or by the traditional conditional likelihood approach (Chamberlain (1985), Honoré and Kyriazidou

(2000), Magnac (2000)), these formulas imply that the AME and average transition probabilities will also be

point identified in that case.

A similar observation holds in the model with exogenous regressors given by the law of motion (3). In that

more general setting, one may consider the average transition probability from state l to state k in period t

for a subpopulation of individuals with covariate x = (x1, . . . , xT ). Formally,

Π
k|l
t (y0, x) = E

[
π
k|l
t (Xi, Ai) |Yi0 = y0, Xi = x

]
=

∫
π
k|l
t (x, a)p(a|y0, x)da, ∀(k, l) ∈ Y2, ∀x ∈ RTKx

where this time p(a|y0, x) denotes the marginal probability of the fixed effect A given y0 and regressor x.

Then, the corresponding AMEs are simply:

AMEt(y0, x) = Π
1|1
t (y0, x)−Π

1|0
t (y0, x) = Π

1|1
t (y0, x)− (1−Π

0|0
t (y0, x))

It follows from Lemma 2 that for T ≥ 2 and t ≥ 1:

Π
0|0
t (y0, x) = E

[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1, Xi) |Yi0 = y0, Xi = x
]

Π
1|1
t (y0, x) = E

[
ϕ
1|1
θ0

(Yit+1, Yit, Yit−1, Xi) |Yi0 = y0, Xi = x
]

and if four consecutive periods or more are available to the econometrician, these functionals can also be

computed as expectations of the transition functions provided in Lemma 3 and Corollary 3.1. In Appendix

Section E, we show that our moment conditions coincide exactly with those of Honoré and Weidner (2020)

for T = 3. As a result, we know without further work that if T ≥ 3 the moment functions of Proposition 2

identify the common parameters θ0 = (γ0, β
′
0) ∈ RKx+1 if Xit consist of continuous and or discrete regressors.

In turn, average transition probabilities and AMEs are point identified under the same conditions. Remark

4 indicates that this result may carry over to extensions of the baseline model with regressors of the form

Zit = f(Yit−1, Xit).

4.4 Connections to other works on the AR(1) logit model

As highlighted in the pure model, there is an insightful parallel between our methodology and that of Kitazawa

(2022). This is equally true in the AR(1) model with strictly exogenous explanatory variables. Indeed, after
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some algebraic manipulation, we can re-express the transition functions of Lemma 2 as:

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = 1− Yit − (1− Yit)Yit+1 + (1− Yit)Yit+1e

−∆X′
it+1β + δYit−1(1− Yit+1)Yit+1e

−∆X′
it+1β

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = YitYit+1 + Yit(1− Yit+1)e

∆X′
it+1β + δ(1− Yit−1)Yit(1− Yit+1)

where δ = (eγ − 1). Therefore, the moment conditions of Lemma 2 imply that we can write:

Yit + (1− Yit)Yit+1 − (1− Yit)Yit+1e
−∆X′

it+1β0 − δ0Yit−1(1− Yit+1)Yit+1)e
−∆X′

it+1β0 =
eX

′
it+1β0+Ai

1 + eX
′
it+1β0+Ai

+ ϵ
0|0
it

YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β0 + δ0(1− Yit−1)Yit(1− Yit+1) =
eγ0+X′

it+1β0+Ai

1 + eγ0+X′
it+1β0+Ai

+ ϵ
1|1
it

where E
[
ϵ
0|0
it |Yi0, Y t−1

i1 , Xi, Ai

]
= 0 and E

[
ϵ
1|1
it |Yi0, Y t−1

i1 , Xi, Ai

]
= 0. These expressions are the h-form and

g-form of Kitazawa (2022) for model (3) and were originally obtained through an ingenious usage of the

mathematical properties of the hyperbolic tangent function. The evident connection between the transition

functions and the h-form and g-form offers an interesting new perspective on the transformation approach

of Kitazawa (2022) for the AR(1) model.

If we further define

Uit = Yit + (1− Yit)Yit+1 − (1− Yit)Yit+1e
−∆X′

it+1β − δYit−1(1− Yit+1)Yit+1)e
−∆X′

it+1β

Υit = YitYit+1 + Yit(1− Yit+1)e
∆X′

it+1β + δ(1− Yit−1)Yit(1− Yit+1)

the two moment functions of Kitazawa (2022) for the AR(1) model write

ℏUit = Uit − Yit−1 − tanh

(
−γYit−2 + (∆Xit +∆Xit+1)

′β

2

)
(Uit + Yit−1 − 2UitYit−1)

ℏΥit = Υit − Yit−1 − tanh

(
γ(1− Yit−2) + (∆Xit +∆Xit+1)

′β

2

)
(Υit + Yit−1 − 2ΥitYit−1)

which can be formulated in terms of our own moment functions as

ℏUit = − 2

2− ω
0|0
t,t−1(θ)

ψ
0|0
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

ℏΥit =
2

2− ω
1|1
t,t−1(θ)

ψ
1|1
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

Appendix Section E provides detailed derivations for the mapping between our two approaches. This last

result indicates that our moment conditions essentially match those of Kitazawa (2022) when T = 3. It is

certain however that for T ≥ 4, Proposition 2 imply that there are further identifying moments than those

based solely on ℏUit and ℏΥit for the AR(1) model. Interestingly, as mentioned previously, it turns out as

we show in Appendix Section E that our moment functions coincide exactly with those derived by Honoré

and Weidner (2020) for the special case T = 3.

To the best of our knowledge, besides the AR(1) model and a few specific examples, the structure of

moment conditions in models with arbitrary lag order is not fully understood in the literature. Building on
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Bonhomme (2012), Honoré and Weidner (2020) propose moment functions for the AR(2) model up to T = 4

and the AR(3) model with T = 5 but no results are offered beyond these special instances. Yet, we believe

this is of general interest not only to better understand the properties of DFEL models but also for practical

modelling and estimation purposes. For example, Card and Hyslop (2005) argue in favor of using higher

order logit specifications to model a control group in the context of a welfare experiment. Relatedly, there

are few results available for multivariate fixed effect models and existing methods developed for the scalar

case are likely to be difficult to adapt due to computational barriers. In the remaining sections, we show that

our two-step approach addresses these issues by providing closed form expressions for the moment equality

conditions of these more complex models.

4.5 Moment conditions for the AR(p) logit model, p > 1

Allowing for more than one lag is often desirable in empirical work to model persistent stochastic processes

and to better fit the data (e.g Magnac (2000) on labour market histories, Chay et al. (1999) and Card and

Hyslop (2005) on welfare recipiency). To this end, we now discuss how to extend our identification scheme

to general univariate autoregressive models. We consider

Yit = 1


p∑

r=1

γ0rYit−r +X ′
itβ0 +Ai − ϵit ≥ 0

 , t = 1, . . . , T (9)

for known autoregressive order p > 1 and vector of initial values Y 0
i = (Yi−(p−1), . . . , Yi−1, Yi0)

′ ∈ Yp, with

Ai ∈ R.

The corresponding one-period ahead transition probabilities are given by:

π
k|lp1
t (Ai, Xi) = P (Yit+1 = k|Yit = l1, . . . , Yit−(p−1) = lp, Xi, Ai) =

ek(
∑p

l=1 γ0rlr+X′
it+1β0+Ai)

1 + e
∑p

r=1 γ0rlr+X′
it+1β0+Ai

, ∀(k, l1, . . . , lp) ∈ Yp+1

The flexibility granted by model (9) relative to the baseline AR(1) necessarily comes with further technical

challenges but the overall methodology to derive moment conditions remains unchanged. To reiterate, Step

1) concerns the computation of the model transition functions and Step 2) consists in differencing these

transition functions to output moments functions verifying (1). In fact, notice that upon completion of

Step 1), Step 2) in the AR(p) model with p > 1 poses no further challenges than in the AR(1) model.

This is because the transition probabilities take the same functional form: a logistic transformation of a

linear index composed of common parameters, the regressors and the fixed effect only. Hence, the same

differencing strategy applies to produce valid moment functions. Complications only arise in Step 1) owing

to the presence of further lagged outcomes relative to specification (3). This is addressed in Theorem 1 which

provides an algorithm to compute a set of transition functions for arbitrary lag order greater than one.
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Theorem 1. In model (9) with T ≥ p+ 1, for all t ∈ {p, . . . , T − 1} and yp1 ∈ Yp , let

k
y1|yp

1
t (θ) =

p∑
r=1

γryr +X ′
it+1β

k
y1|yk+1

1
t (θ) =

k+1∑
r=1

γryr +

p∑
r=k+2

γrYit−(r−1) +X ′
it+1β, k = 1, . . . , p− 2, if p > 2

ut−k(θ) =

p∑
r=1

γrYit−(r+k) +X ′
it−kβ, k = 1, . . . , p− 1

w
y1|yk+1

1
t (θ) =

[
1− e(k

y1|yk+1
1

t (θ)−ut−k(θ))

]yk+1
[
1− e−(k

y1|yk+1
1

t (θ)−ut−k(θ))

]1−yk+1

, k = 1, . . . , p− 1

and

ϕ
y1|yk+1

1

θ (Yit+1, Yit, Y
t−1
it−(p+k), Xi) =[

(1− Yit−k) + w
y1|yk+1

1
t (θ)ϕ

y1|yk
1

θ (Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)Yit−k

](1−y1)yk+1

×[
1− Yit−k − w

y1|yk+1
1

t (θ)

(
1− ϕ

y1|yk
1

θ (Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
(1− Yit−k)

](1−y1)(1−yk+1)

×

[
Yit−k + w

y1|yk+1
1

t (θ)ϕ
y1|yk

1

θ (Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)(1− Yit−k)

]y1(1−yk+1)

×[
1− (1− Yit−k)− w

y1|yk+1
1

t (θ)

(
1− ϕ

y1|yk
1

θ (Yit+1, Yit, Y
t−1
it−(p+k−1), Xi)

)
Yit−k

]y1yk+1

, k = 1, . . . , p− 1

where

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

Then,

E
[
ϕ
y1|yp

1

θ0
(Yit+1, Yit, Y

t−1
it−(2p−1), Xi) |Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp
1

t (Ai, Xi)

E

[
ϕ
y1|yk+1

1

θ0
(Yit+1, Yit, Y

t−1
it−(p+k), Xi) |Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Y

t−(k+1)

it−(p−1)

t (Ai, Xi), k = 0, . . . , p− 2

Amongst other things, the theorem shows that closed form expressions of the model transition functions in

periods t ∈ {p, . . . , T − 1} exist so long as T ≥ p+ 1.

It is insightful to discuss in details the simple example of the AR(2) model to understand the intuition

behind Theorem 1 and clarify how it addresses the issue of higher order lags. To fix ideas, suppose T ≥ 3

and that we are interested in finding a transition function associated to the transition probability

π
0|0,1
t (Ai, Xi) =

1

1 + eγ02+X′
it+1β0+Ai
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for some t ∈ {2, . . . , T − 1}. The starting point of Theorem 1 is to reason by analogy with the AR(1) model

and search for a moment function ϕ
0|0
θ (.) of the form:

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Yit−2, Xi) = (1− Yit)ϕ

0|0
θ (Yit+1, 0, Yit−1, Yit−2, Xi)

in the hope that some transition function associated to π
0|0,1
t (Ai, Xi) has this exact structure. Notice the

dependence on four consecutive outcomes, Yit+1, Yit, Yit−1, Yit−2, instead of three which reflects the intention

of accounting for one additional lagged outcome in the AR(2) model. Calculations analogous to those for the

pure AR(1) in Section 4 quickly reveal that the problem cannot be solved directly in this way but that we

can nevertheless select ϕ
0|0
θ (.) such that:

E
[
ϕ
0|0
θ0

(Yit+1, Yit, Y
t−1
it−2, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

0|0,Yit−1

t (Ai, Xi)

It requires setting

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−2, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−γ2∆Yit−1−∆X′
it+1β)

We have reached an intermediate step since ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−2, Xi) maps to π

0|0,Yit−1

t (Ai, Xi) which dif-

fers from π
0|0,1
t (Ai, Xi) due to its dependence on the random variable Yit−1. To make further progress, one

would intuitively need to “set” Yit−1 to 1 so that the two transition probabilities coincide. Naturally, we

cannot directly manipulate Yit−1 as it is predetermined but we can make this idea more concrete by interact-

ing ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−2, Xi) with Yit−1. Computing the conditional expectation of this product and using

iterated expectations, one gets

E
[
Yit−1ϕ

0|0
θ0

(Yit+1, Yit, Y
t−1
it−2, Xi)|Y 0

i , Y
t−2
i1 , Xi, Ai

]
= E

[
Yit−1π

0|0,1
t (Ai, Xi)|Y 0

i , Y
t−2
i1 , Xi, Ai

]
=

1

1 + eγ02+X′
it+1β+Ai

eγ01Yit−2+γ02Yit−3+X′
it−1β0+Ai

1 + eγ01Yit−2+γ02Yit−3+X′
it−1β0+Ai

At this point, we recognize a product of logistic indices similar to those encountered in the construction

of sequences of transition functions for the AR(1) model (see for example Lemma 3). Hence, appealing

to the same partial fraction decomposition in Appendix Lemma 9, we infer that a transition function as-

sociated to π
0|0,1
t (Ai, Xi) exists in the form of a weighted average of (1 − Yit−1) and the interaction of

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−2, Xi) with Yit−1. Specifically, it reads:

ϕ
0|0,1
θ (Yit+1, Yit, Y

t−1
it−3, Xi) = (1− Yit−1) + (1− eγ2+X′

it+1β−(γ1Yit−2+γ2Yit−3+X′
it−1β))ϕ

0|0
θ (Y t+1

it−2, Xi)Yit−1

Theorem 1 generalizes this procedure to the other transition probabilities, viz. π
0|0,0
t (Ai, Xi), π

1|1,0
t (Ai, Xi),

π
1|1,1
t (Ai, Xi), and to models with a higher lag order. For example, if p = 3, the algorithm goes through 3

steps to compute the transition function associated to say, π
0|0,1,0
t (Ai, Xi). The first step finds the moment

function associated to π
0|0,Yit−1,Yit−2

t (Ai, Xi). The second step eliminates the dependence on Yit−1 from the

first step and yields the moment function associated to π
0|0,1,Yit−2

t (Ai, Xi). Lastly, the third step eliminates
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the dependence on Yit−2 from the second step and produces the target transition function. There will be p

steps of the same nature when the autoregressive order is p, with p > 1.

As advertised, Step 2) is now analogous to the AR(1) case since the transition probabilities keep an

identical structure. As soon as T ≥ p + 2, for periods t ∈ {p + 1, . . . , T − 1}, we can construct transition

functions other than ϕ
y1|yp

1

θ (Yit+1, Yit, Y
t−1
it−(2p−1), Xi) also associated to π

y1|yp
1

t (Ai, Xi), for y
p
1 ∈ Yp. These

new transition functions that we denote ζ
y1|yp

1

θ (.) take the form of a weighted combination of past outcome

1(Yis = y1), s ∈ {1, . . . , t − p} and the interaction of 1(Yis ̸= y1) with any transition function whose

conditiong set encompasses Yis for it to map to π
y1|yp

1
t (Ai, Xi). The simplest examples which are also the

only ones available when T = p+ 2, are given in Lemma 4.

Lemma 4. In model (9) with T ≥ p+ 2, for all t ∈ {p+ 1, . . . , T − 1}, s ∈ {1, . . . , t− p} and yp1 ∈ Yp, let

µs(θ) =

p∑
r=1

γ0rYis−r +X ′
isβ

κ
y1|yp

1
t (θ) =

p∑
r=1

γ0ryr +X ′
it+1β

ω
y1|yp

1
t,s (θ) =

[
1− e(κ

y1|yp
1

t (θ)−µs(θ))

]1−y1
[
1− e−(κ

y1|yp
1

t (θ)−µs(θ))

]y1

and define the moment functions:

ζ
0|0,yp

2

θ (Y t+1
it−(2p−1), Y

s
is−p, Xi) = (1− Yis) + ω

0|0,yp
2

t,s (θ)Yisϕ
0|0,yp

2

θ (Yit+1, Yit, Y
t−1
it−(2p−1), Xi)

ζ
1|1,yp

2

θ (Y t+1
it−(2p−1), Y

s
is−p, Xi) = Yis + ω

1|1,yp
2

t,s (θ)(1− Yis)ϕ
1|1,yp

2

θ (Yit+1, Yit, Y
t−1
it−(2p−1), Xi)

Then,

E
[
ζ
y1|yp

1

θ0
(Y t+1

it−(2p−1), Y
s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= π

y1|yp
1

t (Ai, Xi)

Unsurprisingly, as in the AR(1) case, it becomes possible to construct iteratively more transition functions

from those given in Lemma 4 when at least T = p+ 3 periods are observed post initial condition. They are

given in Corollary 4.1 below.

Corollary 4.1. In model (9) with T ≥ p+ 3, for all t ∈ {p+ 1, . . . , T − 1} and collection of ordered indices

sJ1 with J ≥ 2 satisfying t− p ≥ s1 > . . . > sJ ≥ 1, and for all yp1 ∈ Yp, let

ζ
0|0,yp

2

θ (Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = (1− YisJ ) + ω

0|0,yp
2

t,sJ (θ)YisJ ζ
0|0,yp

2

θ (Y t+1
it−1, Y

s1
is1−p, . . . , Y

sJ−1

isJ−1−p, Xi)

ζ
1|1,yp

2

θ (Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = Yisj + ω

1|1,yp
2

t,sJ (θ)(1− YisJ )ζ
1|1,yp

2

θ (Y t+1
it−1, Y

s1
is1−p, . . . , Y

sJ−1

isJ−1−p, Xi)

with weights ω
y1|yp

1
t,sJ (θ) defined as in Lemma 4. Then,

E
[
ζ
y1|yp

1

θ0
(Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= π

y1|yp
1

t (Ai, Xi)

The proof follows the same logic as that of Lemma 4 and is thus omitted.
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For Step 2), provided that T ≥ p+ 2, it is clear that the difference between any two distinct transition

functions associated to the same transition probability in t ∈ {p + 1, . . . , T − 1} will yield a valid moment

function. Proposition 3 hereinbelow presents one set of valid moment functions that generalize those obtained

previously for the one lag case.

Proposition 3. In model (9)

if T ≥ p+ 2, for all t ∈ {p+ 1, . . . , T − 1}, s ∈ {1, . . . , t− p} and yp1 ∈ Yp, let

ψ
y1|yp

1

θ (Y t+1
it−(2p−1), Y

s
is−p, Xi) = ϕ

y1|yp
1

θ (Y t+1
it−(2p−1), Xi)− ζ

y1|yp
1

θ (Y t+1
it−(2p−1), Y

s
is−p, Xi),

if T ≥ p + 3, for all t ∈ {p + 1, . . . , T − 1} and collection of ordered indices sJ1 with J ≥ 2 satisfying

t− p ≥ s1 > . . . > sJ ≥ 1, and for all yp1 ∈ Yp, let

ψ
y1|yp

1

θ (Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi) = ϕ

y1|yp
1

θ (Y t+1
it−(2p−1), Xi)− ζ

y1|yp
1

θ (Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi)

Then,

E
[
ψ
y1|yp

1

θ0
(Y t+1

it−(2p−1), Y
s
is−p, Xi)|Y 0

i , Y
s−1
i1 , Xi, Ai

]
= 0

E
[
ψ
y1|yp

1

θ0
(Y t+1

it−(2p−1), Y
s1
is1−p, . . . , Y

sJ
isJ−p, Xi)|Y 0

i , Y
sJ−1
i1 , Xi, Ai

]
= 0

This family of moment functions features precisely 2T − (T + 1 − p)2p distinct elements for any initial

condition. Indeed, fix Y 0
i and a p-vector yp1 ∈ {0, 1}p. Then, for a given time period t ∈ {p+ 1, . . . , T − 1},

there are
(
t−p
1

)
moments of the form ψ

y1|yp
1

θ (Y t+1
it−(2p−1), Y

s
is−p, Xi) corresponding to choices of s ∈ {1, . . . , t−p}.

Moreover, by choosing any feasible sequence sJ1 , J ≥ 2, verifying t−p ≥ s1 > . . . > sJ ≥ 1 we produce another∑t−p
l=2

(
t−p
l

)
moment functions of the form ψ

y1|yp
1

θ (Y t+1
it−(2p−1), Y

s1
is1−p, . . . , Y

sJ
isJ−p, Xi). In total, for period t, we

count :

t−p∑
l=1

(
t− p

l

)
= 2t−p − 1

valid moments. Now, summing over all possible values for t ∈ {p + 1, . . . , T − 1} and multiplying by the

number of distinct values for yp1 , namely 2p, we get:

2p
T−1∑

t=p+1

t−p∑
l=1

(
t− p

l

)
= 2p

T−1∑
t=p+1

(2t−p − 1) = 2p

(
2
1− 2T−p−1

1− 2
− (T − p− 1)

)
= 2T − (T + 1− p)2p

Numerical experimentation for various values of T in the AR(1) and AR(2) cases suggest that the moment

functions of Proposition 3 are effectively linearly independent. Therefore, collectively, these results seem to

corroborate the conjecture of Honoré and Weidner (2020) that the AR(p) model with T ≥ p + 2 periods

induces a total of 2T − (T + 1 − p)2p linearly independent moment conditions. This also suggests that

functional differencing at least in panel data logit models can be broken down into a series of equivalent

simpler subproblems period by period that find all moment equality restrictions. As we illustrate, such an
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approach can be particularly fruitful to tackle more complex models where an analysis of the full likelihood,

a high dimensional object, may prove difficult.

Remark 5. Even though the exposition centered on model (9), our methodology applies more broadly to

models of the form

Yit = 1
{
g(Yit−1, . . . , Yit−p, Xit, θ0) +Ai − ϵit ≥ 0

}
, t = 1, . . . , T

where the lag order p > 1 is known and g(.) is known up to the finite dimensional parameter θ0. We can

thus incorporate interaction effects within our framework which are often of interest in applied work. For

instance, Card and Hyslop (2005) model welfare participation as a random effect AR(2) logit process with

an interaction term between lagged outcomes. It takes the form

Yit = 1
{
γ01Yit−1 + γ02Yit−2 + δ0Yit−1Yit−2 +X ′

itβ0 +Ai − ϵit ≥ 0
}
, t = 1, . . . , T

where Ai is the random effect following either a normal distribution or a discrete distribution with few

support points. In this case, minor modifications of the results in this section will deliver moment conditions

for θ0 = (γ01, γ01, δ0, β
′
0) that are immune to misspecifications of individual unobserved heterogeneity.

4.6 Impossibility of moment restrictions in AR(p) logit models with T ≤ p+ 1

Our results so far show how to construct moment restrictions on common parameters when at least T = p+2

observations after t = 0 are available. In Theorem 2, we establish that this is effectively the minimum number

of time periods required for the existence of valid moment functions in AR(p) models.

Theorem 2. Consider model (9) with p ≥ 1 and initial condition y0 ∈ Yp. Suppose that γ0r ̸= 0 for all

r ∈ {1, . . . , p} and β0 ̸= 0 with x′tβ0 ̸= x′sβ0 for all t ̸= s. Then, for any T ≤ p+1, there are no valid moment

functions in the sense of equation (1).

Honoré and Weidner (2020) showed a simpler impossibility result for the special case of the AR(1) with

T = 2. To prove Theorem 2, we start from the observation that equation (1) for a given T , initial condition

y0 and regressors x can be written equivalently as:∑
(y1,...,yT )∈YT

ψθ0(y
T
1 , y

0, x)P (Yi1 = y1, . . . , YiT = yT |Y 0
i = y0, Xi = x,Ai = a) = 0, ∀a ∈ R

This formulation clarifies that the existence of a valid moment function for a given T is equivalent to the

existence of a linear relationship between the conditional probabilities of all choice histories of length T ,

yT1 = (y1, . . . , yT ) ∈ YT , given (y0, x, a) when viewed as functions of a. We then show using an induction

argument and elementary properties of polynomials that such a linear dependence does not exist when

T ≤ p + 1. An immediate corollary is that the transition functions in period t = p whose expression are

provided in Theorem 1 are unique under such conditions.
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The conditions of the theorem are the most general insofar as all model parameters are relevant and

the matching strategy of Honoré and Kyriazidou (2000) is inapplicable. Of course, other identification

opportunities may arise under a weaker set of conditions as the next section illustrates.

4.7 Identification of the pure AR(2) logit model

The preceding sections introduced a methodology in the AR(p) framework with p > 1 to derive moment

functions that are valid for all possible realizations of the regressors and initial condition. Here, we show how

we can leverage these moment functions to formally prove identification of the common parameters of purely

autoregressive models, focusing for simplicity of exposition on the AR(2).

For the case T = 3, Honoré and Weidner (2020) showed with the assistance of a computer algebra system

(e.g Mathematica) that γ1 and γ2 are identified if some combinations of initial conditions (Yi0, Yi−1) are

observed with strictly positive probability. We use our simple two-step approach to re-derive this result

purely analytically and offer new insights. With T = 3, we know that the transition functions associated

to: π0|0,0(Ai), π
0|1,1(Ai), π

1|1,0(Ai), π
1|1,1(Ai) can be computed with formulas provided by Theorem 1. After

some algebraic simplifications, they read:

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 − (1− eγ1Yi0+γ2Yi−1)Yi2e

γ2Yi3Yi0(1− Yi1)

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 + (1− eγ2−(γ1Yi0+γ2Yi−1))(1− Yi2)e

Yi3(γ1−γ2(1−Yi0))Yi1

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1) = Yi1 + (1− e−(γ1−(γ1Yi0+γ2Yi−1)))Yi2e

(1−Yi3)(γ1−γ2Yi0)(1− Yi1)

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1) = 1− (1− Yi1)− (1− eγ1+γ2−(γ1Yi0+γ2Yi−1))

(
1− Yi2e

γ2(1−Yi3)(1−Yi0)
)
Yi1

Because T < 4, the arguments developed previously are not directly applicable. Yet, the logic to construct

identifying moments remains the same: we want to find another set of transition functions to formulate a dif-

ferencing strategy. With fewer observations then T = 2+p (here p = 2), we will show how this can be achieved

by leveraging subsets of the four possible initial conditions in the population:
{
(0, 0), (0, 1), (1, 0), (1, 1)

}
.

The solution to complete Step 1) and then Step 2) comes from noticing that by Theorem 1 (more

precisely Lemma 11 used in its proof), we also have

ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1) = (1− Yi1)e

Yi2(γ1Yi0−γ2(Yi0−Yi−1))

ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1) = Yi1e

(1−Yi2)(γ1(1−Yi0)+γ2(Yi0−Yi−1))

E
[
ϕ
0|0
θ0

(Yi2, Yi1, Y
0
i−1)|Yi−1, Yi0, Ai

]
= π0|0,Yi0(Ai)

E
[
ϕ
1|1
θ0

(Yi2, Yi1, Y
0
i−1)|Yi−1, Yi0, Ai

]
= π1|1,Yi0(Ai)

Therefore, if Yi0 = 0, ϕ
0|0
θ (Y 2

i1, 0, Yi−1) and ϕ
1|1
θ (Y 2

i1, 0, Yi−1) are also transition functions associated to

π0|0,0(Ai) respectively π1|1,0(Ai). This observation suggests that for the initial condition Yi0 = 0, two
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valid moment functions are:

ψ
0|0,0
θ (Y 3

i1, 0, Yi−1) = ϕ
0|0,0
θ (Y 3

i1, 0, Yi−1)− ϕ
0|0
θ (Y 2

i1, 0, Yi−1)

ψ
1|1,0
θ (Y 3

i1, 0, Yi−1) = ϕ
1|1,0
θ (Y 3

i1, 0, Yi−1)− ϕ
1|1
θ (Y 2

i1, 0, Yi−1)

And if Yi0 = 1, ϕ
0|0
θ (Y 2

i1, 1, Yi−1) and ϕ
1|1
θ (Y 2

i1, 1, Yi−1) are then transition functions associated to π0|0,1(Ai)

and π1|1,1(Ai) respectively. This suggests that for the initial condition Yi0 = 1, two valid moment functions

are:

ψ
0|0,1
θ (Y 3

i1, 1, Yi−1) = ϕ
0|0,1
θ (Y 3

i1, 1, Yi−1)− ϕ
0|0
θ (Y 2

i1, 1, Yi−1)

ψ
1|1,1
θ (Y 3

i1, 1, Yi−1) = ϕ
1|1,1
θ (Y 3

i1, 1, Yi−1)− ϕ
1|1
θ (Y 2

i1, 1, Yi−1)

Straightforward calculations detailed in Appendix Section H show that ψ
0|0,0
θ (Y 3

i1, 0, Yi−1) and

ψ
1|1,1
θ (Y 3

i1, 1, Yi−1) are identically zero and hence are uninformative about γ01, γ02. After a suitable rescaling

(see again Appendix Section H), the other two moment functions now denoted with a “tilde” superscript to

reflect the normalization read:

ψ̃
0|0,1
θ (Y 3

i1, 1, Yi−1) = eγ2(1−Yi−1)Yi1(1− Yi2)Yi3 + e−γ1+γ2(1−Yi−1)Yi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

ψ̃
1|1,0
θ (Y 3

i1, 0, Yi−1) = eγ2Yi−1(1− Yi1)Yi2(1− Yi3) + e−γ1+γ2Yi−1(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

For the initial condition Yi0 = 1, Yi−1 = 1 respectively Yi0 = 0, Yi−1 = 0, ψ̃
0|0,1
θ (Yi3, Yi2, 1, 1) respec-

tively ψ̃
1|1,0
θ (Yi3, Yi2, 0, 0) only depend on γ1 and are strictly monotonic in this parameter. Therefore,

E

[
ψ̃
0|0,1
θ (Yi3, Yi2, 1, 1)|Yi−1 = 1, Yi0 = 1

]
and E

[
ψ̃
1|1,0
θ (Yi3, Yi2, 0, 0)|Yi−1 = 0, Yi0 = 0

]
point identify γ01.

Likewise, for the initial condition Yi0 = 1, Yi−1 = 0 respectively Yi0 = 0, Yi−1 = 1, ψ̃
0|0,1
θ (Yi3, Yi2, 1, 0)

respectively ψ̃
1|1,0
θ (Y 3

i1, 0, Yi−1) are strictly monotonic in γ2. It follows that provided that γ01 is identified,

E

[
ψ̃
0|0,1
θ (Yi3, Yi2, 1, 0)|Yi−1 = 0, Yi0 = 1

]
and E

[
ψ̃
1|1,0
θ (Y 3

i1, 0, 1)|Yi−1 = 1, Yi0 = 0

]
point identify γ02. Tak-

ing stock, if P (Yi−1 = 1, Yi0 = 1) > 0 or P (Yi−1 = 0, Yi0 = 0) > 0, γ01 is identified and if we also have

P (Yi−1 = 0, Yi0 = 1) > 0 or P (Yi−1 = 1, Yi0 = 0) > 0, γ02 is also identified (see also Honoré and De Paula

(2021) for a similar discussion).

However, in the absence of sufficient variation in the initial condition, it is clear that this line of arguments

fails to identify all the common parameters. In fact, for a fixed initial condition in the population, Dobronyi

et al. (2021) formally prove that the common parameters are only set identified. In that case, T = 4 is

actually the minimum number of periods required to identify θ0 = (γ01, γ02). This follows for example from

the fact that with T = 4, γ02 is identified (Chamberlain (1985)) and the fact that for any or the four initial

conditions, the moment functions presented above are always strictly monotonic in γ1 and hence identify the

true parameter given that γ02 is identified.
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4.8 Identification of the AR(2) logit model with strictly exogenous regressors

Next, we discuss point identification in the AR(2) logit model with strictly exogenous explanatory variables.

As in the pure version of the model, for T = 3, the identification argument relies on matching the transition

probabilities across period t = 1 and t = 2 in order to construct valid moment functions. The only difference

is that since the transition probabilities are covariate-dependent, the approach further requires Xi2 = Xi3.

Then, a direct generalization of the steps laid out in the pure model yield two valid moment functions for

the initial conditions Yi0 = 1 and Yi0 = 0 given by

ψ̃
0|0,1
θ (Y 3

i1, 1, Yi−1) = eγ2(1−Yi−1)+X′
i31βYi1(1− Yi2)Yi3 + e−γ1+γ2(1−Yi−1)+X′

i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

ψ̃
1|1,0
θ (Y 3

i1, 0, Yi−1) = eγ2Yi−1−X′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1+γ2Yi−1−X′

i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

In addition to being strictly monotonic in γ1 and γ2, Honoré and Weidner (2020) observe that they are

strictly increasing or decreasing in βk depending on whether Xik,3 > Xik,1 or Xik,3 < Xik,1. They show that

this particular feature can be fruitfully exploited if the initial conditions vary in the population to prove that

the model parameters are identified (see their Theorem 2).

However, it is important to stress that as in Honoré and Kyriazidou (2000), the requirement that we be able

to match each explanatory variables in t = 2 and t = 3 is the key component of this argument and has some

issues. One issue relates to the “curse of dimensionality”: the rate of convergence of kernel-type estimators

drawing on these moments deteriorates with the number of continous components of Xit. The second issue,

mentioned previously, is that it precludes time-specific effects. In fact, in the presence of such regressors, the

analysis of Dobronyi et al. (2021) revealed that there are actually no moment equality conditions available in

the model. Thus, to our understanding, the two questions of i) parameter identifiability in models with more

than a single lag and free-varying covariates and ii) whether we can improve upon existing results remain

unclear.

A logic next step is to consider the same model with an additional period of observation, i.e T = 4, where

the advantage is that the valid moment functions of Proposition 3 - suiting any type of strictly exogenous

regressors - become available. Their full expressions, reported in Appendix Section I.2 are nevertheless

particularly intricate and as such not immediately helpful to make progress on the identification of θ0 =

(γ01, γ02, β
′
0). In light of this, one default option would be to compute the identified set implied by our moment

equality conditions or by the model likelihood following Dobronyi et al. (2021). Another option pursued

here is to explore the usefulness of additional identifying assumptions that may be of plausible empirical

relevance. We consider most specifically the case where a scalar component Wi2 of Xi2 has unbounded

positive support conditional on Y 0
i , the other regressors, Ai and has a non-trivial effect β0W of known sign

to the econometrician. This is the content of Assumption 1 in which Zi = (R′
i,Wi1,Wi3,Wi4),

Xit = (Wit, R
′
it) ∈ RKx for all t ∈ {1, 2, 3, 4}. Dobronyi et al. (2023) used a similar device to develop an

alternative distribution-free semiparametric estimator to that of Honoré and Kyriazidou (2000) that can
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accomodate time effects in the baseline one lag model.

Assumption 1. (i) The covariate Wi2 has unbounded support on R+ conditional on Y 0
i , Zi, Ai and (ii) β0W

is known to be strictly negative.

Besides being a technical convenience, Assumption 1 may be reasonable in some contexts, e.g the econome-

trician may have a confident prior that say income affects tobacco/drug consumption negatively. We point

out that nothing in the discussion that follows hinges critically on βW < 0 and or Wi2 having support on the

positive reals. A set of perfectly symmetric arguments will deliver the same conclusions if instead βW > 0

and/or Wi2 has unbounded support on R−.

Assumption 2. (i) θ0 = (γ01, γ02, β
′
0)

′ ∈ G1 ×G2 ×B = Θ, G1,G2,B compact. The conditional densities of

Ai and Zi verify:

(ii) lim
w2→∞

p(a|y0, z, w2) = q(a|y0, z), lim
w2→∞

p(z|y0, w2) = q(z|y0)

(iii) There exists positive integrable functions d0(a), d1(z), d2(z) such that p(a|y0, z, w2) ≤ d0(a) for all a ∈ R,

d1(z) ≤ p(z|y0, w2) ≤ d2(z) for all z ∈ RKx−1

(iv) w2 7→ p(a, z|y0, z, w2), w2 7→ p(z|y0, w2) are continous in w2.

Assumption 2 provides regularity conditions that once paired with Assumption 1 are sufficient to establish

that θ0 is identified at infinity. The outline of the argument is as follows. Under these assumptions, by

sending Wi2 to ∞, the valid moment function ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) of Proposition 3 reduces to

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)Yi3

+
[
eX

′
i34β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X′
i31βYi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

(10)

which happens because limw2→∞ ew2βW = 0 and Yi2 = 0 with probability one conditional on the regressors

and the fixed effects. The key observation is that this “limiting” moment function has a similar functional

form to the valid moment functions of the AR(1) model with T = 3. In turn, this implies monotonicity

properties on certain regions of the covariate space that we can exploit to point identify θ0. To this end, let

(x̄, x) ∈ R2, such that x̄ > x and define the sets

Xk,+ = {x ∈ R4Kx |x̄ ≥ xk,3 ≥ xk,4 > xk,1 ≥ x or x̄ ≥ xk,3 > xk,4 ≥ xk,1 ≥ x}

Xk,− = {x ∈ R4Kx |x ≤ xk,3 ≤ xk,4 < xk,1 ≤ x̄ or x ≤ xk,3 < xk,4 ≤ xk,1 ≤ x̄}

for all k ∈ {1, . . . ,Kx}. In words, Xk,+ is the region of the covariate space in which values of the k-th regressor

in periods t ∈ {1, 3, 4} belong to [x, x̄] and verify xk,3 ≥ xk,4 ≥ xk,1 with at least one strict inequality. Instead,

Xk,− is the region of the covariate space where realizations of the k-th regressor obey the reverse ranking.

With these notations in hands, we have the following theorem,
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Theorem 3. For T = 4, suppose that outcomes (Yi1, Yi2, Yi3, Yi4) are generated from model (9) with p = 2,

initial condition y0 ∈ {0, 1}2, common parameters θ0 = (γ10, γ20, β
′
0) ∈ R2+Kx and that Assumptions 1 and

2 hold. Further, for all s ∈ {−,+}Kx , let Xs =
Kx⋂
k=1

Xk,sk and suppose that for all y0 ∈ {0, 1}2

lim
w2→∞

P
(
Y 0
i = y0, Xi ∈ Xs, Wi2 = w2

)
> 0

Let

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Xi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
Then, θ0 is the unique solution to the system of equations.

Ψ
0|0,0
s,y0 (θ) = 0, ∀s ∈ {−,+}Kx , ∀y0 ∈ {0, 1}2

Theorem 3 is compelling because we formally learn that point identification is achievable in higher-order

dynamic logit models in short panels. The main cost for this guarantee is Assumption 1 which presumes

knowledge of the data generating process beyond the baseline setup. Our arguments are easily generalizable to

AR(p) models with lag order p ≥ 3. Under natural extensions of Assumptions 1 and 2, the model parameters

θ0 = (γ01, . . . , γ0p, β
′
0) are identified at infinity provided T ≥ 2 + p.

On the more practical front, we note as in Dobronyi et al. (2023) that an estimator of θ0 based on

Theorem 3 will be immune to the curse of dimensionality inherent to matching strategies. The implied

rate of convergence will be independent of the number of regressors albeit slower than
√
N as is typical of

estimators exploiting irregular identification. For this reason, we actually discourage using the moments of

Theorem 3 for estimation purposes even in a context where Assumption 1 may be reasonable. Our practical

recommendation is to proceed as we do in the simulations of Section 6 and use the valid moment functions of

Proposition 3. Despite their complex form, they should “generally” lead to consistent estimators converging

at the parametric rate.

4.9 Average Marginal Effects in the AR(2)

Even though the distribution of unobserved heterogeneity cannot be identified in short panels, we have

previously shown that AMEs of the AR(1) model are in fact identified if four consecutive periods are available.

This section generalizes this insight to the AR(2) model and we illustrate the usefulness of this extension to

measure more refined causal quantities.

With two lags, there are eight total average transition probabilities for any subpopulation of individuals

with covariates x in any given period t. They read,

Π
k|l1,l2
t (y−1, y0, x) = E

[
π
k|l1,l2
t (Xi, Ai)|Yi−1 = y−1, Yi0 = y0, Xi = x

]
=

∫
π
k|l1,l2
t (x, a)p(a|y−1, y0, x)da
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for all (k, l1, l2) ∈ Y3, and x ∈ RTK . It follows that a richer set of AMEs becomes available compared

to the baseline. To fix ideas, suppose that Yit ∈ {0, 1} is a dummy for employment status in period t.

Then, the econometrician may be interested in the causal effect on future employment of transitioning out

of unemployment in the past for both currently employed and unemployed individuals; two quantities we

cannot adequately capture with a one lag specification. With the AR(2), this would correspond to:

Π
1|1,1
t (y−1, y0, x)−Π

1|1,0
t (y−1, y0, x) and Π

1|0,1
t (y−1, y0, x)−Π

1|0,0
t (y−1, y0, x)

The significance of these two AMEs will inform the econometrician on the importance of past experiences for

labor market success. The relative magnitude of γ01 and γ02 will determine the sign of these estimands but

will not pin down their magnitude which partially depends on the distribution of latent heterogeneity. This

is what makes the separate identification analysis of AMEs particularly relevant (Aguirregabiria and Carro

(2021)). Of course, other types of contrasts may be considered and more flexible specifications with 3 lags

and beyond may also be useful to adress certain questions.

In the context of the AR(2) model, we know from the previous section that the structural parameters,

namely θ0 = (γ01, γ02, β
′
0)

′ will be identified with discrete covariates as long as T ≥ 4 ( T = 3 if there is

variation in the initial condition). This implies that the average transition functions are identified, being

expectations of the model transition functions. Specifically, with discrete regressors if T ≥ 4, for all t ∈

{2, . . . , T − 1} and for all (y1, y2) ∈ {0, 1}2

Π
y1|y1,y2

t (y−1, y0, x) = E
[
ϕ
y1|y1,y2

θ0
(Yit+1, Yit, Y

t−1
it−3, Xi)|Yi−1 = yi−1, Yi0 = y0, Xi = x

]
Π

1−y1|y1,y2

t (y−1, y0, x) = 1−Π
y1|y1,y2

t (y−1, y0, x)

One may be also compute these quantities with the transition functions of Lemma 4 and Corollary 4.1 in

long enough panels. In turn, AMEs which are contrasts of average transition functions are point identified.

5 Multi-dimensional fixed effects models

We now turn our attention to multi-dimensional fixed effects models for which fewer methods of estimation

are currently discussed in the literature in the presence of strictly exogenous covariates. We show that the

general blueprint developed in the scalar case to derive valid moment functions carries over to VAR(1) and

MAR(1) models.

5.1 Moment conditions for the VAR(1) logit with exogenous regressors

We begin with the analysis of VAR(1) logit models, variants of which have been successfully used to study

the relationship between sickness and unemployment (Narendranthan et al. (1985)), the progression from

softer drug use to harder drug use among teenagers (Deza (2015)), transitivity in networks (Graham (2013))
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and more recently the employment of couples (Honoré et al. (2022)). For a given M ≥ 2, the model reads:

Ym,it = 1


M∑
j=1

γ0mjYj,it−1 +X ′
m,itβ0m +Am,i − ϵm,it ≥ 0

 , m = 1, . . . ,M, t = 1, . . . , T (11)

We let Yit = (Y1,it, . . . , YM,it)
′ denote the outcome vector in period t with support Y = {0, 1}M of cardinality

2M . We let Xit = (X ′
1,it, . . . , X

′
M,it)

′ ∈ RK1 × . . .×RKM denote the vector of exogenous covariates in period

t and Ai = (A1,i, . . . , AM,i)
′ ∈ RM . The initial condition is now given by Yi0 = (Y1,i0, . . . , YM,i0)

′ ∈ Y and

the model transition probabilities are given by:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l,Xi, Ai) =

M∏
m=1

ekm(
∑M

j=1 γ0mj lj+X′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mj lj+X′
m,it+1β0m+Am,i

for all (k, l) ∈ Y × Y.

Building on Honoré and Kyriazidou (2000), Honoré and Kyriazidou (2019) use a conditional likelihood

approach to prove the identification of the structural parameter θ0 = (γ011, γ012, γ021, γ022, β01, β02) for the

bivariate specification when T = 3 and the regressors do not vary over the last two periods. As in scalar

models, we show hereinbelow that this strong restriction which can yield undesirable rates of convergence is

unnecessary to obtain valid moment conditions.

Step 1) in the VAR(1) logit model has a nuance relative to its scalar counterpart in that the only

transition functions available are those associated to π
k|k
t (Ai, Xi), for k ∈ Y, i.e the probabilities of staying

in the same state. As in the AR(1) model, one can determine their expressions by looking for functions of

the form ϕθ(Yit+1, Yit, Yit−1, Xi) that: 1) are non-zero only for a single realization of the period t outcome

and 2) have a conditional expectation given past outcomes, regressors and the fixed effect equal to one of

the 2M target transition probabilities. This procedure is particularly straightforward to implement in the

bivariate VAR(1) as we detail in Appendix Section J. Once all four transition functions are obtained for the

caseM = 2, it becomes clear that the general functional form is as per Lemma 5. It is then a matter of brute

force calculation to verify that this is indeed correct.

Lemma 5. In model (11) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e

∑M
m=1(Ym,it+1−km)(

∑M
j=1 γmj(Yj,it−1−kj)−∆X′

m,it+1βm)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi) =

M∏
m=1

ekm(
∑M

j=1 γ0mjkj+X′
m,it+1β0m+Am,i)

1 + e
∑M

j=1 γ0mjkj+X′
m,it+1β0m+Am,i

To obtain identifying moments for the model parameters, we now proceed in a similar vein to the AR(1)

model with exogenous regressors. First, we start by noticing that when T ≥ 3 and for t ∈ {2, . . . , T − 1}, one

can find transition functions ζ
k|k
θ (.) different from ϕ

k|k
θ (Y t+1

it−1, Xi) also associated to π
k|k
t (Ai, Xi) for any k ∈ Y.

This property is an immediate consequence of our second partial fraction decomposition formula in Appendix
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Lemma 10 which we may regard as a generalization of Kitazawa (2022)’s hyperbolic transformations to the

multivariate case. Owing to the special logistic structure of the model probabilities, these additional transition

functions ζ
k|k
θ (.) can be found by considering a linear combination of 1(Yis = k), with s ∈ {1, . . . , t− 1} and

the sum over all l ∈ Y \ {k} of interactions between 1(Yis = l) and any transition functions having no

dependence on outcomes prior to period s, e.g ϕ
k|k
θ (Y t+1

it−1, Xi). Lemma 6 below gives the particular transition

functions that can be constructed directly from those of Lemma 5.

Lemma 6. In model (11) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for all m ∈ {1, . . . ,M}

and (k, l) ∈ Y2

µm,s(θ) =

M∑
j=1

γmjYj,is−1 +X ′
m,isβm

κ
k|k
m,t(θ) =

M∑
j=1

γmjkj +X ′
m,it+1βm

ω
k|k
t,s,l(θ) = 1− e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]

and define the moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)

Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Beyond T = 4, more transition functions are available and can be derived sequentially from those of

Lemma 6. This of course is not surprising in light of the results obtained for the AR(1) model. See Corollary

6.1 for their expressions.

Corollary 6.1. In model (11) with T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying

T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let for all k ∈ Y

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}+

∑
l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isJ−1−1, Xi)

with weights ω
k|k
t,sJ ,l

(θ) defined as in Lemma 6. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

One can then obtain a family of valid moment functions for Step 2) by adequately repurposing the

statement of Proposition 2 to the VAR(1) case, i.e by updating the expressions of ϕ
k|k
θ (.) and ζ

k|k
θ according

to Lemma 5 and Corollary 6.1. To conserve on space and avoid repetition, we leave this simple exercise to

the reader.
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Remark 6. Similarly to Remarks 4 and 5 for the scalar case, we emphasize that the tools developed here can

be modified to handle other interesting variants featuring more complex interdependencies across the different

layers of the model indexed by m = 1, . . . ,M . To illustrate the wider applicability of our methodology, we

show in Appendix L how one can derive moment restrictions in the dynamic network formation model of

Graham (2013) and extensions thereof incorporating exogenous covariates.

5.2 Moment conditions for the MAR(1) logit with exogenous regressors

Last, we cover dynamic multinomial logit models which have been utilized to measure state-dependence in a

range of economic contexts including: employment history in the French labor market (Magnac (2000)), the

impact of international trade on the transition matrix of employment across sectors (Egger et al. (2003)) and

consumer product choice (Dubé et al. (2010)) amongst others. Dubé et al. (2010) actually pursue a random

effect approach but our focus here is entirely on a fixed effect setting.

We focus on the the baseline MAR(1) logit model with fixed effects introduced by Magnac (2000) and

further extended in Honoré and Kyriazidou (2000). The model assumes a fixed number of alternatives C +1

with C ≥ 1 and is characterized by the following transition probabilities:

π
k|l
t (Ai, Xi) = P (Yit+1 = k|Yit = l,Xi, Ai) =

eγkl+X′
ikt+1βk+Aik

C∑
c=0

eγcl+X′
ict+1βj+Aic

, t = 1, . . . , T (12)

with (k, l) ∈ Y = {0, 1, . . . , C}. Here, Yit ∈ Y indicates the choice of individual i in period t, Xijt denotes

a vector of individual-alternative specific exogenous covariates and Aij ∈ R is the fixed effect attached to

alternative j for individual i. The initial condition is Yi0 ∈ Y and in keeping with the fixed effect assump-

tion, its conditional distribution given unobserved heterogeneity and the regressors,
(
P (Yi0 = k|Xi, Ai)

)C
k=1

,

is left fully unrestricted. Following Magnac (2000), we normalize the transition parameters and fixed ef-

fect of the reference alternative “0” to zero 8. That is γj0 = γ0j = 0, A0,j = 0 for all j ∈ Y leaving

θ =
(
(γkl)k,l≥1, (βl)l≥0

)
as the unknown model parameters.

This specification can be motivated by assuming that agents rank options according to random latent

utility indices with disturbances independent over time and across alternatives. In this context, equation

(12) is obtained if the best alternative is selected and the error terms are Type 1 extreme value distributed

conditional on Yi0, Ai, Xi (see the simulation design in Section 6). Magnac (2000) studies the “pure” case

without covariates and shows that an extension of the conditional likelihood approach proposed by Chamber-

lain (1985) can be used to identify and estimate the state-dependence parameters. Honoré and Kyriazidou

(2000) show that this argument carries over to the case with exogenous explanatory variables if one matches

the regressors across specific time periods. Here, we offer an alternative estimation strategy that circumvents

the need for matching.

Similarly to the VAR(1) model, Step 1) for the MAR(1) is only possible for the transition probabilities

8The transition parameters of the reference state cannot be identified so a normalization constraint must be imposed. Setting
Ai0 = 0 is also without loss of generality since we can always redefine the fixed effect as A∗

ik = Aik −Ai0.
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of staying in the same state, namely π
k|k
t (Ai, Xi) for k ∈ Y. This feature appears to be a common trait of

multidimensional fixed effects specifications. To facilitate the derivation of the relevant transition functions,

we follow our usual heuristic of looking for ϕ
k|k
θ (.), k ∈ Y satisfying:

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}ϕk|kθ (Yit+1, k, Yit−1)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi) | Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Upon obtaining their exact expressions for the simplest case with C = 2, it is easy to conjecture and verify

by direct calculations that the general expressions of the C + 1 transition functions of the MAR(1) model

are as displayed in Lemma 7.

Lemma 7. In model (12) with T ≥ 2 and t ∈ {1, . . . , T − 1}, let for all k ∈ Y

ϕ
k|k
θ (Y t+1

it−1, Xi) = 1{Yit = k}e
∑

c∈Y\{k} 1{Yit+1=c}(
∑

j∈Y(γcj−γkj)1(Yit−1=j)+γkk−γck+∆X′
ikt+1βk−∆X′

ict+1βc)

Then:

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Unsurprisingly, given the similarities shared between the MAR(1) and all other specifications discussed

in the paper, so long as T ≥ 3, one can again derive transition functions other than ϕ
k|k
θ (Y t+1

it−1, Xi) also

associated to π
k|k
t (Ai, Xi) for k ∈ Y in periods t ∈ {1, . . . , T − 1}. The simple logistic identities of Appendix

Lemma 9 imply that these transition functions, that we keep denoting ζ
k|k
θ (.) have a similar form to those of

the VAR(1) model as shown in Lemma 8.

Lemma 8. In model (12) with T ≥ 3, for all t, s such that T − 1 ≥ t > s ≥ 1, let for all (c, k) ∈ Y2

µc,s(θ) =

C∑
j=1

γcj1(Yis−1 = j) +X ′
icsβc −X ′

i0sβ0

κ
k|k
c,t (θ) = γck +X ′

ict+1βc −X ′
i0t+1β0

ω
k|k
t,s,c(θ) = 1− e(κ

k|k
c,t (θ)−µc,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

and define the moment functions

ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi) = 1{Yis = k}+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)

Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

Additionally, if the econometrician has access to a dataset with more than four observations per sampling

unit - counting the initial condition - then, more transition functions associated to the same transition

probabilities are available per Corollary 8.1.
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Corollary 8.1. In model (12) with T ≥ 4, for any t and ordered collection of indices sJ1 , J ≥ 2, satisfying

T − 1 ≥ t > s1 > . . . > sJ ≥ 1, let for all k ∈ Y

ζ
k|k
θ (Y t+1

it−1, Y
s1
is1−1, . . . , Y

sJ
isJ−1, Xi) = 1{YisJ = k}+

∑
l∈Y\{k}

ω
k|k
t,sJ ,l

(θ)1{YisJ = l}ζk|kθ (Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ−1

isj−1−1, Xi)

with weigts ω
k|k
t,sJ ,l

(θ) defined as in Lemma 8. Then,

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s1
is1−1, . . . , Y

sJ
isJ−1, Xi)|Yi0, Y sJ−1

i1 , Xi, Ai

]
= π

k|k
t (Ai, Xi)

This completes Step 1) for the MAR(1) logit model. For Step 2), we recommend a family of valid

moment functions mirroring those of Proposition 2 for the AR(1) case to ensure their linear independence.

Note that the same differencing strategy works - with the MAR(1) transition functions - by simple virtue of

the law of iterated expectations.

6 Simulation Experiments

In this section, we report the results of a small set of simulations designed to assess the finite sample

performance of GMM estimators based on our moment conditions.

6.1 Monte Carlo for an AR(3) logit model

For our first example, we consider an AR(3) logit model with T = 5 periods (i.e 8 periods in total with

the initial condition) and a single exogenous covariate. We set the common parameters to γ01 = 1.0,

γ02 = 0.5, γ03 = 0.25, β0 = 0.5 and use the following generative model in the spirit of Honoré and Kyriazidou

(2000):

Yi−2 = 1{X ′
i−2β0 +Ai − ϵi−2 ≥ 0}

Yi−1 = 1{γ01Yi−2 +X ′
i−1β0 +Ai − ϵi−1 ≥ 0}

Yi0 = 1{γ01Yi−1 + γ02Yi−2 +X ′
i0β0 +Ai − ϵi0 ≥ 0}

Yit = 1
{
γ01Yit−1 + γ02Yit−2 + γ03Yit−3 +X ′

itβ0 +Ai − ϵit ≥ 0
}
, t = 1, . . . , 5

The disturbances ϵit are iid standard logistic over time, Xit is iid N (0, 1) and the fixed effects are computed

as Ai =
1√
8

5∑
t=−2

Xit. To evaluate the performance of the estimators described below, we simulate data for

four sample sizes : 500, 2000, 8000, 16000, and perform 1000 Monte Carlo replications for each design.

For T = 5, we know from Proposition 3 that 8 valid moment functions are available, each stemming from

the 8 possible transition probabilities of the model (there are really 16 transition probabilities in total but

8 are redundant since probabilities sum to one). Their full expressions are provided in Appendix Section

O.1.We consider the interaction of all 8 valid moment functions with the 3 initial conditions Yi−2, Yi−1, Yi0
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and the difference in covariates Xi5 −Xit for t ∈ {1, . . . , 4} to construct the 56× 1 moment vector:

mθ(Yi, Y
0
i , Xi) =



ψ
0|0,0,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,0,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,1,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
0|0,1,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,0,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,0,1
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,1,0
θ (Y 5

i−1, Y
1
i−2, Xi)

ψ
1|1,1,1
θ (Y 5

i−1, Y
1
i−2, Xi)



⊗



Yi−2

Yi−1

Yi0

Xi5 −Xi1

Xi5 −Xi2

Xi5 −Xi3

Xi5 −Xi4


where ⊗ denotes the standard Kronecker product. The choice of this particular set of intruments is motivated

both by simplicity and by the fact that the model’s valid moment functions depends on Xi only through the

differences Xi5−Xit for periods t ∈ {1, . . . , 4}. We also consider a rescaled version of mθ(Yi, Y
0
i , Xi) that we

denote m̃θ(Yi, Y
0
i , Xi) where each of the 8 valid moment functions are appropriately rescaled so that ∀y31 ∈

{0, 1}3, supXi,Yi,θ

∣∣∣ψy1|y1,y2,y3

θ (Y 5
i−1, Y

1
i−2, Xi)

∣∣∣ < ∞. We do so by normalizing ψ
y1|y1,y2,y3

θ (Y 5
i−1, Y

1
i−2, Xi) by

the sum of the absolute values of all unique values it can take as a function over choice histories Y 5
i1. The

rationale for normalizing the moments originates from Honoré and Weidner (2020) who presented numerical

evidence that a rescaling of this kind improved the finite sample performance of their estimators in the one

and two lags cases. Given, mθ(Yi, Y
0
i , Xi) and m̃θ(Yi, Y

0
i , Xi), we study the properties of 3 different GMM

estimators:

θ̂a = argmax
θ∈R4

 1

N

N∑
i=1

mθ(Yi, Y
0
i , Xi)

′ 1

N

N∑
i=1

mθ(Yi, Y
0
i , Xi)


θ̂b = argmax

θ∈R4

 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)

′ 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)


θ̂c = argmax

θ∈R4

 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)

′

W (θ̂b)

 1

N

N∑
i=1

m̃θ(Yi, Y
0
i , Xi)


whereW (θ̂b) is a diagonal matrix with its diagonal entries equal to the inverse of the sample variances of each

entry of m̃θ̂b(Yi, Y
0
i , Xi). Note that θ̂c is then a two-step estimator since Ŵ (θ̂b) depends upon θ̂b. Moreover,

while the first two GMM estimators assign equal weight to all moments, the third downweights the least

informative in an attempt to gain in precision. Under standard regularity conditions, θ̂a, θ̂b, θ̂c should be

consistent and asymptotically normal.

Table 1 presents the median bias and median absolute errors of the three GMM estimators for each design

N ∈ {500, 2000, 8000, 16000}. Figure 2 in Appendix Section O.2 plots their densities which as expected re-

semble gaussian distributions for the larger values of N . Interestingly, a first observation is that all estimators

appear to suffer from a negative bias at least up to N = 8000. And while this bias effectively vanishes for the
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Table 1: Performance of GMM estimators for the AR(3)

γ̂1
a γ̂1

b γ̂1
c γ̂2

a γ̂2
b γ̂2

c γ̂3
a γ̂3

b γ̂3
c β̂a β̂b β̂c

N = 500
Bias -0.56 -0.81 -0.81 -0.51 -0.33 -0.42 -0.37 -0.45 -0.33 -0.18 -0.05 -0.03
MAE 0.56 0.92 0.91 0.51 0.54 0.53 0.37 0.49 0.37 0.18 0.10 0.10

N = 2000
Bias -0.45 -0.42 -0.33 -0.46 -0.15 -0.16 -0.30 -0.21 -0.09 -0.10 -0.01 -0.00
MAE 0.45 0.60 0.57 0.46 0.34 0.31 0.30 0.29 0.18 0.10 0.05 0.05

N = 8000
Bias -0.30 -0.06 -0.02 -0.35 -0.04 -0.02 -0.22 -0.06 -0.03 -0.06 -0.01 -0.00
MAE 0.30 0.25 0.23 0.35 0.15 0.13 0.22 0.12 0.08 0.06 0.03 0.03

N = 16000
Bias -0.24 -0.01 0.01 -0.29 -0.01 -0.00 -0.18 -0.02 -0.01 -0.04 -0.00 -0.00
MAE 0.25 0.17 0.15 0.29 0.11 0.10 0.18 0.08 0.05 0.04 0.02 0.02

Notes: Bias and MAE stand for median bias and median absolute error respectively. Reported results are based on a 1000

replications of the DGP.

“rescaled” GMM estimators for the larger sample size N = 16000, it remains quite significant for all lag pa-

rameters and the slope coefficient for the “unnormalized” estimator. This is evident from the sign of the bias

in Table 1 and from the fact that all green densities are to the left of the true parameters in Figure 2. This

observation confirms the practical importance of normalizing all valid moment functions in dynamic fixed

effects logit models to obtain precise estimates in small samples. Focusing now on the “rescaled” estimators,

we can see that they perform relatively well for N ≥ 8000 with a small advantage in accuracy for θ̂c reflected

by the overall smaller median absolute bias. This is corroborated in Figure 2: the blue and red densities

are approximately centered at the true parameter values for N ≥ 8000 and the red density is slightly more

concentrated than the blue. Estimates for the slope parameter β are quite accurate even for N = 500 but

precise estimation of the transition parameters requires a larger sample size. In terms of median absolute

bias, it is interesting to note a strict ranking on the precision of estimates of the transition parameters: the

coefficient on the first lag is noisier than the coefficient on the second lag which itself is noisier than the

coefficient on the third lag for each N ∈ {500, 2000, 8000, 16000}. In an unreported set of simulations, we

have found that this empirical pattern is robust to other choices of the population parameters and initial

condition and also applies to the AR(2) model with a similar data generating process.

6.2 Monte Carlo for a MAR(1) logit model

In our next example, we examine a dynamic multinomial logit model with M = 2, T = 3 and a scalar

regressor Xict, c ∈ {0, 1, 2}. We set the common parameters to γ011 = γ022 = 1.0, γ012 = γ021 = 0.5,

β00 = β01 = β02 = 0.5 and impose the normalization γ000 = γ010 = γ020 = γ001 = γ002 = 0. The data
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generating process is:

Y ∗
ic0 = X ′

ic0βc +Aic + ϵic0, ∀c ∈ {0, 1, 2}

Yi0 = c if Y ∗
ic0 = max

k=0,1,2
Y ∗
ik0

Y ∗
ict = γc11(Yit−1 = 1) + γc21(Yit−1 = 1) +X ′

ictβc +Aic + ϵict, ∀c ∈ {0, 1, 2}, t = 1, 2, 3

Yit = c if Y ∗
ict = max

k=0,1,2
Y ∗
ikt, t = 1, 2, 3

where the disturbances ϵict are iid Gumbel(0,1), the covariates Xict are iid N (0, 1) and the fixed effects are

computed as Aic =
1√
4

3∑
t=0

Xit. The specifics of the simulation design are otherwise unchanged.

Since T = 3, Section 5.2 in conjunction with Proposition 2 predict three valid moment functions, viz.

ψ
0|0
θ (Y 3

i1, Y
1
i0, Xi), ψ

1|1
θ (Y 3

i1, Y
1
i0, Xi), ψ

2|2
θ (Y 3

i1, Y
1
i0, Xi) whose exact expressions can be found in Appendix Sec-

tion O.3. Given the importance of rescaling these valid moment functions to obtain good finite sample prop-

erties for GMM estimators in the context of the AR(3), we normalize each ψ
k|k
θ (Y 3

i1, Y
1
i0, Xi) for k ∈ {0, 1, 2}

by the sum of the absolute values of their unique non-zero entries as an eight-dimensional vector (8 possible

choice histories Y 3
i1 per initial condition). We denote the resulting moment functions as ψ̃

k|k
θ (Y 3

i1, Y
1
i0, Xi) and

interact them with the initial condition Yi0 and the differences of covariates: Xict − Xics for all t > s and

c ∈ {0, 1, 2} to produce the 30× 1 moment vector

m̃θ(Yi, Y
0
i , Xi) =


ψ̃
0|0
θ (Y 3

i1, Y
1
i0, Xi)

ψ̃
1|1
θ (Y 3

i1, Y
1
i0, Xi)

ψ̃
2|2
θ (Y 3

i1, Y
1
i0, Xi)

⊗



Yi0

Xi03 −Xi02

Xi03 −Xi01

Xi02 −Xi01

Xi13 −Xi12

Xi13 −Xi11

Xi12 −Xi11

Xi23 −Xi22

Xi23 −Xi21

Xi22 −Xi21


Our choice of instruments is guided again by simplicity and the fact that Xi features in each valid mo-

ment function only in the form of the above contrasts over time of alternative-specific covariates. With

m̃θ(Yi, Y
0
i , Xi) in hand, we analyze the finite sample behavior of the MAR(1) analogs of θ̂b and θ̂c defined

previously for the AR(3). The results of the simulations are summarized in Table 2 and Table 3.

As in the AR(3) example, both GMM estimators are rather imprecise in small samples for the transition

parameters. This is clear from the magnitude of the median absolute error and to a lesser extent the bias in

Table 2 for N ∈ {500, 2000}. Additionally, the slope parameters, β0, β1, β2 are precisely estimated starting at

N = 2000. This time however, the general comparison between the unweighted GMM estimator θ̂b and the

weighted GMM estimator θ̂c is less clear: θ̂c is significantly more biased for N ∈ {500, 2000} and θ̂b seems
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Table 2: Performance of GMM estimators for the MAR(1): transition parameters

γ̂11
b γ̂11

c γ̂12
b γ̂12

c γ̂22
b γ̂22

c γ̂21
b γ̂21

c

N = 500
Bias 0.02 -0.31 0.01 -0.96 -0.03 -0.38 -0.01 -0.43
MAE 0.72 1.09 0.70 1.66 0.74 1.27 0.70 1.15

N = 2000
Bias -0.10 -0.17 -0.04 -0.27 -0.09 -0.14 -0.06 -0.14
MAE 0.49 0.65 0.47 0.87 0.47 0.68 0.49 0.64

N = 8000
Bias -0.08 -0.08 -0.09 -0.10 -0.11 -0.08 -0.07 -0.07
MAE 0.29 0.34 0.28 0.34 0.31 0.31 0.29 0.33

N = 16000
Bias -0.08 -0.05 -0.07 -0.03 -0.04 -0.01 -0.04 -0.01
MAE 0.23 0.26 0.20 0.22 0.22 0.22 0.22 0.24

Notes: Bias and MAE stand for median bias and median absolute error respectively. Reported results are based on a 1000

replications of the DGP.

Table 3: Performance of GMM estimators for the MAR(1): slope parameters

β̂0
b

β̂0
c

β̂1
b

β̂1
c

β̂2
b

β̂2
c

N = 500
Bias 0.03 0.10 0.02 0.07 0.03 0.09
MAE 0.12 0.16 0.10 0.14 0.10 0.15

N = 2000
Bias 0.00 0.02 0.01 0.02 0.01 0.02
MAE 0.06 0.06 0.05 0.05 0.05 0.05

N = 8000
Bias 0.01 0.01 0.01 0.01 0.00 0.01
MAE 0.03 0.03 0.02 0.02 0.02 0.02

N = 16000
Bias 0.00 0.01 0.00 0.01 0.00 0.00
MAE 0.02 0.02 0.02 0.02 0.02 0.02

Notes: Bias and MAE stand for median bias and median absolute error respectively. Reported results are based on a 1000

replications of the DGP.

to outperform θ̂c in terms of median absolute error across all designs. Also, surprisingly, the bias of θ̂b is not

monotonic in N as shown in Table 2: it is lower at N = 500 then at N = 8000 for all transition parameters.

We have not investigated these peculiarities - which could be design specific - further at this moment but it is

certain that a more thorough analysis of the behavior of GMM in such models would be beneficial. Overall,

together with the results for the AR(3), we find that both estimators perform reasonably well in samples of

moderate to large size; in accordance with the findings of Honoré and Weidner (2020).
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7 Conclusion

We have introduced a systematic algebraic method to construct valid moment functions in dynamic logit

models with additive fixed effects and strictly exogenous regressors. It boils down to taking differences

between the transition functions produced by the model in panels that are sufficiently long. These are

distinct functions of the data and the common parameters whose conditional expectation given the initial

condition, the covariates and the fixed effect yield the same transition probability. The usefulness of the

approach was demonstrated through several examples including AR(p) models where a characterization of

the moment conditions is presented for arbitrary p ≥ 1.
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Appendix

A Partial Fraction Decomposition

Lemma 9. For any reals u1, u2, . . . , uK , v1, v2, . . . , vK and a1, a2, . . . , aK , K ≥ 1 we have

1

1 +
K∑

k=1

evk+ak

+

K∑
k=1

(1− euk−vk)
evk+ak(

1 +
K∑

k=1

evk+ak

)(
1 +

∑K
k=1 e

uk+ak

) =
1

1 +
K∑

k=1

euk+ak

and

evj+aj

1 +
K∑

k=1

evk+ak

+ (1− e−uj+vj )
euj+aj(

1 +
K∑

k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

)+

K∑
k=1
k ̸=j

(1− e(uk−uj)−(vk−vj))
evk+ak+uj+aj(

1 +
K∑

k=1

evk+ak

)(
1 +

K∑
k=1

euk+ak

) =
euj+aj

1 +
K∑

k=1

euk+ak

Proof.

1

1 +
∑K

k=1 e
vk+ak

+

K∑
k=1

(1− euk−vk)
evk+ak(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

) =

1 +
∑K

k=1 e
uk+ak +

∑K
k=1 e

vk+ak −
∑K

k=1 e
uk+ak(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)
=

1 +
∑K

k=1 e
vk+ak(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)
=

1

1 +
∑K

k=1 e
uk+ak

1



and

evj+aj

1 +
∑K

k=1 e
vk+ak

+ (1− e−uj+vj )
euj+aj(

1 +
∑K

k=1 e
vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)+
K∑

k=1
k ̸=j

(1− e(uk−uj)−(vk−vj))
evk+ak+uj+aj(

1 +
K∑

k=1

evk+ak

)(
1 +

∑K
k=1 e

uk+ak

) =

evj+aj +
∑K

k=1 e
vj+aj+uk+ak + euj+aj − evj+aj +

K∑
k=1
k ̸=j

evk+ak+uj+aj −
∑K

k=1
k ̸=j

evj+aj+uk+ak

(
1 +

∑K
k=1 e

vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)

=

euj+aj + evj+aj+uj+aj +
K∑

k=1
k ̸=j

evk+ak+uj+aj

(
1 +

∑K
k=1 e

vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)

=

euj+aj

(
1 +

K∑
k=1

evk+ak

)
(
1 +

∑K
k=1 e

vk+ak

)(
1 +

∑K
k=1 e

uk+ak

)
=

euj+aj

1 +
∑K

k=1 e
uk+ak

Lemma 10. Fix M ≥ 2, let Y = {0, 1}M . Then, for any k ∈ Y and any reals u1, u2, . . . , uM , v1, v2, . . . , vM

and a1, a2, . . . , aM , we have

M∏
m=1

ekm(vm+am)

1 + evm+am
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)

1 + eum+am

elm(vm+am)

1 + evm+am
=

M∏
m=1

ekm(um+am)

1 + eum+am

Proof. Let

LHS =

M∏
m=1

ekm(vm+am)

1 + evm+am
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)

1 + eum+am

elm(vm+am)

1 + evm+am

2



and let Num denote the numerator of LHS. We have:

Num = Num1 +Num2

Num1 =

M∏
m=1

ekm(vm+am)(1 + eum+am)

Num2 =
∑

l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)(uj−vj)

] M∏
m=1

ekm(um+am)+lm(vm+am)

=

M∏
m=1

ekm(um+am)
∑

l∈Y\{k}

M∏
m=1

elm(vm+am) −
∑

l∈Y\{k}

e
∑M

j=1 lj(uj+aj)+kj(vj+aj)

=

M∏
m=1

ekm(um+am)
∑

l∈Y\{k}

M∏
m=1

elm(vm+am) −
M∏

m=1

ekm(vm+am)
∑

l∈Y\{k}

M∏
m=1

elm(um+am)

Now, noting that

∑
l∈Y

M∏
m=1

elm(vm+am) =

M∏
m=1

(1 + evm+am)

∑
l∈Y

M∏
m=1

elm(um+am) =

M∏
m=1

(1 + eum+am)

we get

Num2 =

M∏
m=1

ekm(um+am)
∑

l∈Y\{k}

M∏
m=1

elm(vm+am) −
M∏

m=1

ekm(vm+am)
∑

l∈Y\{k}

M∏
m=1

elm(um+am)

=

M∏
m=1

ekm(um+am)

 M∏
m=1

(1 + evm+am)−
M∏

m=1

ekm(vm+am)


−

M∏
m=1

ekm(vm+am)

 M∏
m=1

(1 + eum+am)−
M∏

m=1

ekm(um+am)


=

M∏
m=1

ekm(um+am)(1 + evm+am)−
M∏

m=1

ekm(vm+am)(1 + eum+am)

=

M∏
m=1

ekm(um+am)(1 + evm+am)−Num1

It follows that Num =
∏M

m=1 e
km(um+am)(1 + evm+am) and consequently

LHS =

∏M
m=1 e

km(um+am)(1 + evm+am)∏M
m=1(1 + eum+am)(1 + evm+am)

=

M∏
m=1

ekm(um+am)

1 + eum+am

3



B Proofs of Propositions 1, 2, 3

Propositions 1, 2 and 3 all follow from the same strategy proof based on the the law of iterated expectations.

We focus on Proposition 1 here and leave the other cases to the reader.

Take any t, s verifying T − 1 ≥ t > s ≥ 1. For any k ∈ Y, we have

E
[
ψ
k|k
θ0

(Y t+1
it−1, Y

s+1
is−1)|Yi0, Y

s−1
i1 , Ai

]
= E

[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1)− ϕ
k|k
θ0

(Yis+1, Yis, Yis−1)|Yi0, Y s−1
i1 , Ai

]
= E

[
E
[
ϕ
k|k
θ0

(Yit+1, Yit, Yit−1)|Yi0, Y t−1
i1 , Ai

]
|Yi0, Y s−1

i1 , Ai

]
− πk|k(Ai)

= E
[
πk|k(Ai)|Yi0, Y s−1

i1 , Ai

]
− πk|k(Ai)

= πk|k(Ai)− πk|k(Ai)

= 0

The second and third equalities follow from the law of iterated expectation and Lemma 1.

C Proof of Lemma 2

The functional form proposed for the transition function ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) implies that it is null when

Yit ̸= 0. Hence

E
[
ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

1

1 + eγ0Yit−1+X′
itβ0+Ai

×(
eX

′
it+1β0+Ai

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (1, 0, Yit−1, Xi) +

1

1 + eX
′
it+1β0+Ai

ϕ
0|0
θ (0, 0, Yit−1, Xi)

)

Thus, to obtain the transition probability π
0|0
t (Ai, Xi) =

1

1+e
X′

it+1
β0+Ai

at θ = θ0, we must set:

ϕ
0|0
θ (1, 0, Yit−1, Xi) = eγYit−1+(Xit−Xit+1)

′β

ϕ
0|0
θ (0, 0, Yit−1, Xi) = 1

ϕ
0|0
θ (k, 1, Yit−1, Xi) = 0, ∀k ∈ Y

This can be expressed compactly as: ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) = (1− Yit)e

γYit+1(Yit−1−∆X′
it+1β)

Likewise, for ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) we have:

E
[
ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

eγ0Yit−1+X′
itβ0+Ai

1 + eγ0Yit−1+X′
itβ0+Ai

×(
eγ0+X′

it+1β0+Ai

1 + eγ0+X′
it+1β0+Ai

ϕ
1|1
θ (1, 1, Yit−1, Xi) +

1

1 + eγ0+X′
it+1β0+Ai

ϕ
1|1
θ (0, 1, Yit−1, Xi)

)
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Hence, to get π
1|1
t (Ai, Xi) =

e
γ0+X′

it+1β0+Ai

1+e
γ0+X′

it+1
β0+Ai

at θ = θ0, we must set:

ϕ
1|1
θ (1, 1, Yit−1, Xi) = 1

ϕ
1|1
θ (0, 1, Yit−1, Xi) = eγ(1−Yit−1)+(Xit+1−Xit)

′β

ϕ
1|1
θ (k, 0, Yit−1, Xi) = 0, ∀k ∈ Y

This can be written succinctly as: ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yite

(1−Yit+1)(γ(1−Yit−1)+β∆Xit+1)

D Proof of Lemma 3

The result hinges on the simple identity provided in Lemma 9 that for any three reals v, u, a, we have:

1

1 + ev+a
+ (1− eu−v)

ev+a

(1 + ev+a)(1 + eu+a)
=

1

(1 + eu+a)

ev+a

1 + ev+a
+ (1− e−(u−v))

eu+a

(1 + ev+a)(1 + eu+a)
=

eu+a

(1 + eu+a)

By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
(1− Yis) + ω

0|0
t,s (θ0)Yisϕ

0|0
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1
i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)E

[
YisE

[
ϕ
0|0
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

1

1 + eµs(θ0)+Ai
+ ω

0|0
t,s (θ0)E

[
Yis|Yi0, Y s−1

i1 , Xi, Ai

] 1

1 + eκ
0|0
t (θ0)+Ai

=
1

1 + eµs(θ0)+Ai
+ (1− eκ

0|0
t (θ0)−µs(θ0))

eµs(θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
0|0
t (θ0)+Ai)

=
1

1 + eκ
0|0
t (θ0)+Ai

= π
0|0
t (Ai, Xi)

The second equality follows from the measureability of the weight ω
0|0
t,s (θ0) with respect to the conditioning

set. The third equality follows from the law of iterated expectations and Lemma 2. The penultimate equality

uses the first mathematical identity presented above.
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Similarly,

E
[
ζ
1|1
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= E

[
Yis + ω

1|1
t,s (θ0)(1− Yis)ϕ

1|1
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y s−1
i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)E

[
(1− Yis)E

[
ϕ
1|1
θ0

(Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]
=

eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+ ω

1|1
t,s (θ0)E

[
(1− Yis)|Yi0, Y s−1

i1 , Xi, Ai

] eκ
1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

=
eµs(θ0)+Ai

1 + eµs(θ0)+Ai
+

(
1− e−(κ

1|1
t (θ0)−µs(θ0))

)
eκ

1|1
t (θ0)+Ai

(1 + eµs(θ0)+Ai)(1 + eκ
1|1
t (θ0)+Ai)

=
eκ

1|1
t (θ0)+Ai

1 + eκ
1|1
t (θ0)+Ai

= π
1|1
t (Ai, Xi)

The second equality follows from the measureability of the weight ω
0|0
t,s (θ0) with respect to the conditioning

set. The third equality follows from the law of iterated expectations and Lemma 2. The penultimate equality

uses the second mathematical identity presented above.

E Connection to Kitazawa and Honoré-Weidner

Recall from Proposition 2 that when T ≥ 3, our simplest moment conditions for t, s such that T−1 ≥ t > s ≥ 1

write:

ψ
0|0
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)− ζ

0|0
θ (Y t+1

it−1, Y
s
is−1, Xi)

= ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)− (1− Yis)− ω

0|0
t,s (θ)Yisϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

ψ
1|1
θ (Y t+1

it−1, Y
s
is−1, Xi) = ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)− ζ

1|1
θ (Y t+1

it−1, Y
s
is−1, Xi)

= ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)− Yis − ω

1|1
t,s (θ)(1− Yis)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi)

where we know from Lemma 3 that

ω
0|0
t,s (θ) = 1− e(κ

0|0
t (θ)−µs(θ))

= 1− e(Xit+1−Xis)
′β−γYis−1

ω
1|1
t,s (θ) = 1− e−(κ

1|1
t (θ)−µs(θ))

= 1− e−γ(1−Yis−1)−(Xit+1−Xis)
′β)

6



Now, note that:

tanh

(
γ(1− Yit−2) + (∆Xit +∆Xit+1)

′β

2

)
=

1− e−(γ(1−Yit−2)+(∆Xit+∆Xit+1)
′β)

1 + e−(γ(1−Yit−2)+(∆Xit+∆Xit+1)′β)
=

ω
1|1
t,t−1(θ)

2− ω
1|1
t,t−1(θ)

tanh

(
−γYit−2 + (∆Xit +∆Xit+1)

′β

2

)
=
e−γYit−2+(∆Xit+∆Xit+1)

′β − 1

e−γYit−2+(∆Xit+∆Xit+1)′β + 1
= −

ω
0|0
t,t−1(θ)

2− ω
0|0
t,t−1(θ)

and ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Υit and 1− ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi) = Uit. Thus, we have:

(2− ω
1|1
t,t−1(θ))ℏUit = (2− ω

1|1
t,t−1(θ))(Uit − Yit−1) + ω

0|0
t,t−1(θ) (Uit + Yit−1 − 2UitYit−1)

= 2
[
Uit − Yit−1 + ω

0|0
t,t−1(θ)Yit−1(1− Uit)

]
= 2

[
1− ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)− Yit−1 + ω

0|0
t,t−1(θ)Yit−1ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

]
= −2

[
ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)− (1− Yit−1)− ω

0|0
t,t−1(θ)Yit−1ϕ

0|0
θ (Yit+1, Yit, Yit−1, Xi)

]
= −2ψ

0|0
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

(2− ω
1|1
t,t−1(θ))ℏΥit = (2− ω

1|1
t,t−1(θ))(Υit − Yit−1)− ω

1|1
t,t−1(θ) (Υit + Yit−1 − 2ΥitYit−1)

= 2
[
Υit − Yit−1 − ω

1|1
t,t−1(θ)Υit (1− Yit−1)

]
= 2

[
ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi)− Yit−1 − ω

1|1
t,t−1(θ)ϕ

1|1
θ (Yit+1, Yit, Yit−1, Xi) (1− Yit−1)

]
= 2ψ

1|1
θ (Y t+1

it−1, Y
t−1
it−2, Xi)

To establish the connection to the work of Honoré and Kyriazidou (2000), it is useful to re-write the moment

functions slightly differently. By re-arranging terms, one obtains the following for T = 3

ψ
0|0
θ (Y 3

1 , Y
1
i0, Xi) = (1− Yi1)ϕ

0|0
θ (Y 3

i1, Xi) + e(Xi3−Xi1)
′β−γYi0Yi1ϕ

0|0
θ (Y 3

i1, Xi)− (1− Yi1)

= e(Xi2−Xi3)
′β(1− Yi1)(1− Yi2)Yi3 + (1− Yi1)(1− Yi2)(1− Yi3)

+ e(Xi2−Xi1)
′β+γ(1−Yi0)Yi1(1− Yi2)Yi3

+ e(Xi3−Xi1)
′β−γYi0Yi1(1− Yi2)(1− Yi3)

− (1− Yi1)

= (e(Xi2−Xi3)
′β − 1)(1− Yi1)(1− Yi2)Yi3

+ e(Xi2−Xi1)
′β+γ(1−Yi0)Yi1(1− Yi2)Yi3

+ e(Xi3−Xi1)
′β−γYi0Yi1(1− Yi2)(1− Yi3)

− (1− Yi1)Yi2

(13)

where the last line uses the fact that: (1−Yi1) = (1−Yi1)Yi2+(1−Yi1)(1−Yi2)Yi3+(1−Yi1)(1−Yi2)(1−Yi3)

to make some cancellations. For the initial condition, Yi0 = 0, equation (13) corresponds to their moment

7



function mb
0 which they express in an extensive form. For Yi0 = 1, we get instead mb

1. Similarly,

ψ
1|1
θ (Y 3

i1, Y
1
i0, Xi) = Yi1ϕ

1|1
θ (Y 3

i1, Xi) + e−γ(1−Yi0)−(Xi3−Xi1)
′β)(1− Yi1)ϕ

1|1
θ (Y 3

i1, Xi)− Yi1

= e(Xi3−Xi2)
′βYi1Yi2(1− Yi3) + Yi1Yi2Yi3

+ e(Xi1−Xi2)
′β+γYi0(1− Yi1)Yi2(1− Yi3)

+ e(Xi1−Xi3)
′β−γ(1−Yi0)(1− Yi1)Yi2Yi3

− Yi1

= (e(Xi3−Xi2)
′β − 1)Yi1Yi2(1− Yi3)

+ e(Xi1−Xi2)
′β+γYi0(1− Yi1)Yi2(1− Yi3)

+ e(Xi1−Xi3)
′β−γ(1−Yi0)(1− Yi1)Yi2Yi3

− Yi1(1− Yi2)

(14)

where the last line uses the fact that: Yi1 = Yi1(1−Yi2)+Yi1Yi2Yi3+Yi1Yi2(1−Yi3). For the initial condition

Yi0 = 0, equation (14) gives their moment function ma
0 and for Yi0 = 1, we get ma

1 . Our moments are thus

identical, at least for the case T = 3.

F Proof of Theorem 1

We start by proving the following Lemma

Lemma 11. In model (9), with T ≥ 2 and t ∈ {1, . . . , T − 1}, let

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)e

Yit+1(γ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β)

ϕ
1|1
θ (Yit+1, Yt, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β)

Then,

E
[
ϕ
0|0
θ0

(Yit+1, Yit, Y
t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

0|0,Y t−1
it−(p−1)

t (Ai, Xi) =
1

1 + e
∑p

l=2 γ0lYit+1−l+X′
it+1β0+Ai

E
[
ϕ
1|1
θ0

(Yit+1, Yit, Y
t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

1|1,Y t−1
it−(p−1)

t (Ai, Xi) =
eγ01+

∑p
l=2 γ0lYit+1−l+X′

it+1β0+Ai

1 + eγ01+
∑p

l=2 γ0lYit+1−l+X′
it+1β0+Ai

Instead of verifying the result directly from the expression given in the Lemma, it is easier to start from the

heuristic idea, emphasized throughout the text, that we look for two functions such that:

ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1− Yit)ϕ

0|0
θ (Yit+1, 0, Y

t−1
it−p, Xi)

ϕ
1|1
θ (Yit+1, Yit, Yit−1, Xi) = Yitϕ

1|1
θ (Yit+1, 1, Y

t−1
it−p, Xi)

E
[
ϕ
k|k
θ0

(Yit+1, Yit, Y
t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , Xi, Ai

]
= π

k|k,Y t−1
it−(p−1)

t (Ai, Xi), ∀k ∈ Y

8



By definition, ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) is null when Yit ̸= 0. Hence

E
[
ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi)|Y 0

i , Y
t−1
i1 , X,A

]
=

1

1 + e
∑p

l=1 γ0lYit−l+X′
itβ0+Ai

× (

e
∑p

l=2 γ0lYit+1−l+X′
it+1β0+Ai

1 + e
∑p

l=2 γ0lYit+1−l+X′
it+1β0+Ai

ϕ
0|0
θ (1, 0, Y t−1

it−p, Xi) +
1

1 + eγ02Yit−1+X′
it+1β0+Ai

ϕ
0|0
θ (0, 0, Y t−1

it−p, Xi))

Thus, to obtain the transition probability π
0|0,Y t−1

it−(p−1)

t (Ai, Xi) =
1

1+e
∑p

l=2
γ0lYit+1−l+X′

it+1
β0+Ai

at θ = θ0, we

must set:

ϕ
0|0
θ (1, 0, Y t−1

it−p, Xi) = eγ1Yit−1−
∑p

l=2 γl∆Yit+1−l−∆X′
it+1β

ϕ
0|0
θ (0, 0, Y t−1

it−p, Xi) = 1

ϕ
0|0
θ (k, 1, Y t−1

it−p, Xi) = 0,∀k ∈ Y

more compactly this writes, ϕ
0|0
θ (Yit+1, Yit, Y

t−1
it−p, Xi) = (1−Yit)eYit+1(γ1Yit−1−

∑p
l=2 γl∆Yit+1−l−∆X′

it+1β). Anal-

ogously, ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi) is null when Yit ̸= 1. Hence

E
[
ϕ
1|1
θ (Yit+1, Yit, Y

t−1
it−p, Xi))|Y 0

i , Y
t−1
1 , X,A

]
=

e
∑p

l=1 γ0lYit−l+X′
itβ0+Ai

1 + e
∑p

l=1 γ0lYit−l+X′
itβ0+Ai

× (

eγ01+
∑p

l=2 γ0lYit+1−l+X′
it+1β0+Ai

1 + eγ01+
∑p

l=2 γ0lYit+1−l+X′
it+1β0+Ai

ϕ
1|1
θ (1, 1, Y t−1

it−p, Xi) +
1

1 + eγ01+γ02Yit−1+X′
it+1β0+Ai

ϕ
1|1
θ (0, 1, Y t−1

it−p, Xi))

Consequently, to get π
1|1,Y t−1

it−(p−1)

t (Ai, Xi) =
e
γ01+

∑p
l=2

γ0lYit+1−l+X′
it+1β0+Ai

1+e
γ01+

∑p
l=2

γ0lYit+1−l+X′
it+1

β0+Ai
at θ = θ0, we must set:

ϕ
1|1
θ (1, 1, Y t−1

it−p, Xi) = 1

ϕ
1|1
θ (0, 1, Y t−1

it−p, Xi) = eγ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β

ϕ
1|1
θ (k, 0, Y t−1

it−p, Xi) = 0,∀k ∈ Y

This can be written succinctly as: ϕ
1|1
θ (Yit+1, Yt, Y

t−1
it−p, Xi) = Yite

(1−Yit+1)(γ1(1−Yit−1)+
∑p

l=2 γl∆Yit+1−l+∆X′
it+1β).

This completes the proof of the Lemma.

Now, for T ≥ p + 1 fix t ∈ {p, . . . , T − 1} and y = (y1, . . . , yp) = yp1 ∈ {0, 1}p. We will prove by finite

induction the statement P(k):

E

[
ϕ
y1|yk+1

1

θ0
(Yit+1, Yit, Y

t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Y

t−(k+1)

it−(p−1)

t (Ai, Xi)

for k = 0, . . . , p− 2 for p ≥ 2.

Base step:

P(0) is true by Lemma 11 which also deals with the edge case p = 2. Thus, let us assume p ≥ 3 in the

remainder of the induction argument.

Induction Step:

Suppose P(k) is true for some k ∈ {0, . . . , p − 3}, we show that P(k + 1) is true. Using the law of iterated

expectations, the induction hypothesis P(k) and the identities of Lemma 9, we have:

9



If y1 = 0, yk+1 = 1

E

[
ϕ
0|0,yk

2 ,1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
(1− Yit−k) + w

0|0,yk
2 ,1

t (θ0)ϕ
0|0,yk

2

θ0
(Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai
+ w

0|0,yk
2 ,1

t (θ0)E

[
E

[
ϕ
0|0,yk

2

θ0
(Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)|Y 0

i , Y
t−k
i1 , Xi, Ai

]
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]

=
1

1 + eut−k(θ0)+Ai
w

0|0,yk
2 ,1

t (θ0)E

[
π
0|0,yk

2 ,Y
t−k
it−(p−1)

t (Ai, Xi)Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]
=

1

1 + eut−k(θ0)+Ai
+ w

0|0,yk
2 ,1

t (θ0)E

[
1

1 + e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X′
it+1β0+Ai

Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

=
1

1 + eut−k(θ0)+Ai
+ (1− e(k

0|0,yk
2 ,1

t (θ0)−ut−k(θ0)))
1

1 + ek
0|0,yk

2 ,1

t (θ0)+Ai

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

=
1

1 + ek
0|0,yk

2 ,1

t (θ0)+Ai

= π
0|0,yk

2 ,1,Y
t−(k+1)

it−(p−1)

t (Ai, Xi)

If y1 = 0, yk+1 = 0

E

[
ϕ
0|0,yk

2 ,0
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
1− Yit−k − w

0|0,yk
2 ,0

t (θ0)

(
1− ϕ

0|0,yk
2

θ0
(Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]

= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai

− w
0|0,yk

2 ,0
t (θ0)E

E [(1− ϕ
0|0,yk

2

θ0
(Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
|Y 0

i , Y
t−k
i1 , Xi, Ai

]
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai


= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
− w

0|0,yk
2 ,0

t (θ0)E

[
(1− π

0|0,yk
2 ,Y

t−k
it−(p−1)

t (Ai, Xi))(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

= 1− eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
− w

0|0,yk
2 ,0

t (θ0)E

 e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X′
it+1β0+Ai

1 + e
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X′
it+1β0+Ai

(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai


= 1−

 eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ (1− e−(k

0|0,yk
2 ,0

t (θ0)−ut−k(θ0)))
ek

0|0,yk
2 ,0

t (θ0)+Ai

1 + ek
0|0,yk

2 ,0

t (θ0)+Ai

1

1 + eut−k(θ0)+Ai


= 1− ek

0|0,yk
2 ,0

t (θ0)+Ai

1 + ek
0|0,yk

2 ,0

t (θ0)+Ai

=
1

1 + ek
0|0,yk

2 ,0

t (θ0)+Ai

= π
0|0,yk

2 ,0,Y
t−(k+1)

it−(p−1)

t (Ai, Xi)
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If y1 = 1, yk+1 = 0

E

[
ϕ
1|1,yk

2 ,0
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
Yit−k + w

1|1,yk
2 ,0

t (θ0)ϕ
1|1,yk

2

θ0
(Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ w

1|1,yk
2 ,0

t (θ0)×

E

[
E

[
ϕ
1|1,yk

2

θ0
(Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)|Y 0

i , Y
t−k
i1 , Xi, Ai

]
(1− Yit−k)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]

=
eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ w

1|1,yk
2 ,0

t (θ0)E

[
π
1|1,yk

2 ,Y
t−k
it−(p−1)

t (Ai, Xi)(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

=
eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ w

1|1,yk
2 ,0

t (θ0)E

 eγ01+
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X′
it+1β0+Ai

1 + eγ01+
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X′
it+1β0+Ai

(1− Yit−k)|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai


=

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai
+ (1− e−(k

1|1,yk
2 ,0

t (θ0)−ut−k(θ0)))
ek

1|1,yk
2 ,0

t (θ0)+Ai

1 + ek
1|1,yk

2 ,0

t (θ0)+Ai

1

1 + eut−k(θ0)+Ai

=
ek

1|1,yk
2 ,0

t (θ0)+Ai

1 + ek
1|1,yk

2 ,0

t (θ0)+Ai

= π
1|1,yk

2 ,0,Y
t−(k+1)

it−(p−1)

t (Ai, Xi)

If y1 = 1, yk+1 = 1

E

[
ϕ
1|1,yk

2 ,1
θ0

(Yit+1, Yit, Y
t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= E

[
1− (1− Yit−k)− w

1|1,yk
2 ,1

t (θ0)

(
1− ϕ

1|1,yk
2

θ0
(Yit+1, Yit, Y

t−1
it−(p+k−1), Xi)

)
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]

= 1− 1

1 + eut−k(θ0)+Ai

− w
1|1,yk

2 ,1
t (θ0)E

E [(1− π
1|1,yk

2 ,Y
t−k
it−(p−1)

t (Ai, Xi)

)
|Y 0

i , Y
t−k
i1 , Xi, Ai

]
Yit−k|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai


= 1− 1

1 + eut−k(θ0)+Ai
− w

1|1,yk
2 ,1

t (θ0)E

[
1

1 + eγ01+
∑k

r=2 γ0ryr+
∑p

r=k+1 γ0rYit−(r−1)+X′
it+1β0+Ai

Yit−k|Y 0
i , Y

t−(k+1)
i1 , Xi, Ai

]

= 1−

 1

1 + eut−k(θ0)+Ai
+ (1− e(k

1|1,yk
2 ,1

t (θ0)−ut−k(θ0)))
1

1 + ek
1|1,yk

2 ,1

t (θ0)+Ai

eut−k(θ0)+Ai

1 + eut−k(θ0)+Ai


= 1− 1

1 + ek
1|1,yk

2 ,1

t (θ0)+Ai

=
ek

1|1,yk
2 ,1

t (θ0)+Ai

1 + ek
1|1,yk

2 ,1

t (θ0)+Ai

= π
1|1,yk

2 ,1,Y
t−(k+1)

it−(p−1)

t (Ai, Xi)
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Putting these intermediate results together, we have effectively proved that

E

[
ϕ
y1|yk+1

1

θ0
(Yit+1, Yit, Y

t−1
it−(p+k), Xi)|Y 0

i , Y
t−(k+1)
i1 , Xi, Ai

]
= π

y1|yk+1
1 ,Y

t−(k+1)

it−(p−1)

t (Ai, Xi)

which completes the induction argument.

Now, it only remains to show that

E
[
ϕ
y1|yp

1

θ0
(Yit+1, Yit, Y

t−1
it−(2p−1), Xi)|Y 0

i , Y
t−p
i1 , Xi, Ai

]
= π

y1|yp
1

t (Ai, Xi)

To this end, it suffices to perform calculations identical to those used in the induction argument but using

this time

E

[
ϕ
y1|yp−1

1

θ0
(Yit+1, Yit, Y

t−1
it−(2p−2), Xi)|Y 0

i , Y
t−(p−1)
i1 , Xi, Ai

]
= π

y1|yp−1
1 ,Yit−(p−1)

t (Ai, Xi)

k
y1|yp

1
t (θ) =

p∑
r=1

γryr +X ′
it+1β

ut−(p−1)(θ) =

p∑
r=1

γrYit−(r+p−1) +X ′
it−(p−1)β

w
y1|yp

1
t (θ) =

[
1− e(k

y1|yp
1

t (θ)−ut−(p−1)(θ))

]yp
[
1− e−(k

y1|yp
1

t (θ)−ut−(p−1)(θ))

]1−yp

This concludes the proof of the theorem.

G Proof of Theorem 2

Without loss of generality and for notational simplicity, we will establish the result for Y 0
i = 0p. It will be

clear from the argument below that nothing hinges on that particular case.

Our starting point is that equation (1) for a given T , initial condition y0 and regressors x can be written

equivalently as:∑
(y1,...,yT )∈YT

ψθ0(y
T
1 , y

0, x)P (Yi1 = y1, . . . , YiT = yT |Y 0
i = y0, Xi = x,Ai = a) = 0, ∀a ∈ R

This formulation is interesting as it really clarifies that the existence of a valid moment function for a given

T is equivalent to the existence of a linear relationship between the conditional probabilities of all choice

histories of length T , yT1 = (y1, . . . , yT ) ∈ YT , given (y0, x, a) when viewed as functions of a. We will now

prove that such a linear dependence does not exist under our working assumptions for T ≤ p + 1. To this

end, we will show via finite induction that the statement P(k):

“the conditional probabilities of all choice histories of length k, yk1 ∈ Yk, given Y 0
i = 0p, Xi = x,Ai are

linearly independent as functions of Ai”

12



holds for all k = 1, . . . , p+ 1.

Base step:

For k = 1, the two possible choice histories are y1 = 0 and y1 = 1 with conditional probabilities given by:

P (Yi1 = 1|Y 0
i = 0p, Xi = x,Ai = a) =

1

1 + ex
′
1β0+a

P (Yi1 = 0|Y 0
i = 0p, Xi = x,Ai = a) =

ex
′
1β0+a

1 + ex
′
tβ0+a

Only one of the two probabilities has ea in the numerator so the two are clearly linearly independent. 9

Induction Step:

Suppose P(k) is true for some k ∈ {1, . . . , p}, we show that P(k + 1) is true.

Towards a contradiction, suppose that the 2k+1 possible choice histories have conditional probabilities

that are linearly dependent. Then, this means that there exists a collection of scalars (λy1,...,yk+1
)yk+1

1 ∈{0,1}k+1

not all zeros such that:∑
yk+1
1 ∈{0,1}k+1

λy1,...,yk+1
P (Yi1 = y1, . . . , Yik+1 = yk+1|Y 0

i = 0p, Xi = x,Ai = a) = 0, ∀a ∈ R (15)

Let us use the following reparameterization u = ea, Bt = ex
′
tβ for all t ∈ {1, . . . , k + 1} and Ct = eγt for all

t ∈ {1, . . . , k} . Then (15), can be reformulated as∑
yk
1∈{0,1}k

Qy1,...,yk(u) = 0, ∀u ∈ R+ (16)

where

Qy1,...,yk(u) = λy1,...,yk,0P (Yi1 = y1, . . . , Yik = yk, Yik+1 = 0|Y 0
i = 0p, Xi = x,Ai = lnu)

+ λy1,...,yk,1P (Yi1 = y1, . . . , Yik = yk, Yik+1 = 1|Y 0
i = 0p, Xi = x,Ai = lnu)

9{1, P (Y1 = 1|Y 0 = 0p, X = x,A = a), P (Y1 = 0|Y 0 = 0p, X = x,A = a)} are not linearly independent however since the
two probabilities sum to 1)
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that is

Qy1,...,yk(u) = λy1,...,yk,0

(B1u)
y1

k∏
t=2

(
Bt

t−1∏
s=1

C
yt−s
s u

)yt

(1 +B1u)
k+1∏
t=2

(
1 +Bt

t−1∏
s=1

C
yt−s
s u

) + λy1,...,yk,1

(B1u)
y1

k∏
t=2

(
Bt

t−1∏
s=1

C
yt−s
s u

)yt

Bk+1

k∏
s=1

C
yt−s
s u

(1 +B1u)
k+1∏
t=2

(
1 +Bt

t−1∏
s=1

C
yt−s
s u

)

=

(B1u)
y1

k∏
t=2

(
Bt

t−1∏
s=1

C
yt−s
s u

)yt

(1 +B1u)
k+1∏
t=2

(
1 +Bt

t−1∏
s=1

C
yt−s
s u

)
λy1,...,yk,0 + λy1,...,yk,1Bk+1

k∏
s=1

Cyt−s
s u



Define Q : R 7→ R such that, ∀u ∈ R, Q(u) =
∑

yk
1∈{0,1}k Qy1,...,yk(u) where the definition of Qy1,...,yk(u)

shown in the last display is extended to the real line. We know that Q(.) is null on R+ from (16). We argue

that Q(.) must be the null function on the entire real line. Indeed, if we define

R(u) = (1 +B1u)

k∏
t=1

∏
yt
1∈Yt

1 +Bt+1

t∏
s=1

Cys
s u


then, by standard properties of polynomials, S(u) = Q(u)R(u) (which is nothing but the numerator of Q(u)

after putting everything to a common denominator) must be the null function on the real line given that it

has an infinite amount of roots on R+. From inspection, it is clear that R(u) does not vanish on R+ since its

roots are negative given the definition of Bt and Ct. Therefore, it cannot be the null polynomial and hence

it must be the case that Q(u) = 0, for all u ∈ R. In other words, (16) holds on the entire real line.

Now, a critical observation is that due to our assumptions on the common parameters and x, the term

Qy1,...,yk(u) is the only of the 2k summand inQ(u) featuring the term Ty1,...,yk(u) =

(
1 +Bk+1

k∏
s=1

C
yk+1−s
s u

)

in its denominator. The root of Ty1,...,yk(u) is −

(
Bk+1

k∏
s=1

C
yk+1−s
s

)−1

. It follows that if we consider the

function Q(u)Ty1,...,yk(u) and evaluate it at u = −

(
Bk+1

k∏
s=1

C
yk+1−s
s

)−1

, one gets

λy1,...,yk,0 − λy1,...,yk,1Bk+1

k∏
s=1

Cyk+1−s
s

Bk+1

k∏
s=1

Cyk+1−s
s

−1

= λy1,...,yk,0 − λy1,...,yk,1 = 0

That is, λy1,...,yk,0 = λy1,...,yk,1 = λy1,...,yk
. An immediate consequence, is

Qy1,...,yk(u) = λy1,...,yk

(B1u)
y1

k∏
t=2

(
Bt

t−1∏
s=1

C
yt−s
s u

)yt

(1 +B1u)
k∏

t=2

(
1 +Bt

t−1∏
s=1

C
yt−s
s u

)

which implies Qy1,...,yk(ea) = λy1,...,yk
P (Yi1 = y1, . . . , Yik = yk|Y 0

i = 0p, Xi = x,Ai = a). Since this is true

for all of the 2k summands Qy1,...,yk(ea) of Q(ea), Q(ea) = 0 implies that that the conditional probabilities
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of all choice histories of length k, yk1 ∈ Yk, given Y 0
i = y0, Xi = x,Ai are linearly dependent as functions of

Ai. This contradicts the induction hypothesis P(k). Therefore, P(k + 1) is true which concludes the proof.

H Identification of the pure AR(2) logit model with T = 3

We have T = p+1 here since p = 2, so by Theorem 1, we know that we can compute the transition functions

associated to: π0|0,0(Ai), π
0|0,1(Ai), π

1|1,0(Ai), π
1|1,1(Ai). They are given by:

ϕ
0|0
θ (Yi3, Yi2, Y

1
i0) = (1− Yi2)e

Yi3(γ01Yi1−γ02(Yi1−Yi0))

ϕ
1|1
θ (Yi3, Y2, Y

1
i0) = Yi2e

(1−Yi3)(γ01(1−Yi1)+γ02(Yi1−Yi0))

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 − (1− eγ1Yi0+γ2Yi−1)

(
1− ϕ

0|0
θ (Yi3, Yi2, Y

1
i0, Xi)

)
(1− Yi1)

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 + (1− eγ2−(γ1Yi0+γ2Yi−1))ϕ

0|0
θ (Yi3, Yi2, Y

1
i0)Yi1

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1) = Yi1 + (1− e−(γ1−(γ1Yi0+γ2Yi−1)))ϕ

1|1
θ (Yi3, Yi2, Y

1
i0, Xi)(1− Yi1)

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1) = 1− (1− Yi1)− (1− eγ1+γ2−(γ1Yi0+γ2Yi−1))

(
1− ϕ

1|1
θ (Yi3, Yi2, Y

1
i0, Xi)

)
Yi1

After simplifications:

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 − (1− eγ1Yi0+γ2Yi−1)

(
1− (1− Yi2)e

γ02Yi3Yi0

)
(1− Yi1)

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 + (1− eγ2−(γ1Yi0+γ2Yi−1))(1− Yi2)e

Yi3(γ01−γ02(1−Yi0))Yi1

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1) = Yi1 + (1− e−(γ1−(γ1Yi0+γ2Yi−1)))Yi2e

(1−Yi3)(γ01−γ02Yi0)(1− Yi1)

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1) = 1− (1− Yi1)− (1− eγ1+γ2−(γ1Yi0+γ2Yi−1))

(
1− Yi2e

γ02(1−Yi3)(1−Yi0)
)
Yi1

Moreover, we have

ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1) = (1− Yi1)e

Yi2(γ01Yi0−γ02(Yi0−Yi−1)

ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1) = Yi1e

(1−Yi2)(γ01(1−Yi0)+γ02(Yi0−Yi−1))

give:

E
[
ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1)|Yi−1, Yi0, Ai

]
= π0|0,Yi0(Ai) =

1

1 + eγ02Yi0+Ai

E
[
ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1)|Yi−1, Yi0, Ai

]
= π1|1,Yi0(Ai) =

eγ01+γ02Yi0+Ai

1 + eγ01+γ02Yi0+Ai

For π0|0,0(Ai) and π
0|0,Yi0(Ai) to match, we require Yi0 = 0 in which case:

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 − (1− eγ2Yi−1)Yi2(1− Yi1)

ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1) = (1− Yi1)e

γ02Yi2Yi−1 = (1− Yi1)Yi2e
γ02Yi−1 + (1− Yi1)(1− Yi2)
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Therefore,

ψ
0|0,0
θ (Yi3, Yi2, Y

1
i−1) = ϕ

0|0,0
θ (Yi3, Yi2, Y

1
i−1)− ϕ

0|0
θ (Yi2, Yi1, Y

0
i−1) = 0

So there is no information about γ1, γ2 in this moment.

For π0|0,1(Ai) and π
0|0,Yi0(Ai) to match, we require Yi0 = 1 in which case:

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 + (1− e−γ1+γ2(1−Yi−1))(1− Yi2)e

γ01Yi3Yi1

ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1) = (1− Yi1)e

Yi2(γ01−γ02(1−Yi−1))

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = 1− Yi1 + (1− e−γ1+γ2(1−Yi−1))(1− Yi2)e

γ01Yi3Yi1

Then, a valid moment condition that depends on γ01 and γ02 is

ψ
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = ϕ

0|0,1
θ (Yi3, Yi2, Y

1
i−1)− ϕ

0|0
θ (Yi2, Yi1, Y

0
i−1)

= 1− Yi1 + (1− e−γ1+γ2(1−Yi−1))(1− Yi2)e
γ01Yi3Yi1 − (1− Yi1)e

Yi2(γ01−γ02(1−Yi−1))

= 1− Yi1 + eγ01(1− e−γ1+γ2(1−Yi−1))Yi1(1− Yi2)Yi3 + (1− e−γ1+γ2(1−Yi−1))Yi1(1− Yi2)(1− Yi3)

− eγ01−γ02(1−Yi−1)(1− Yi1)Yi2 − (1− Yi1)(1− Yi2)

= eγ01(1− e−γ1+γ2(1−Yi−1))Yi1(1− Yi2)Yi3 + (1− e−γ1+γ2(1−Yi−1))Yi1(1− Yi2)(1− Yi3)

− (eγ01−γ02(1−Yi−1) − 1)(1− Yi1)Yi2

= eγ01(1− e−γ1+γ2(1−Yi−1))Yi1(1− Yi2)Yi3 + (1− e−γ1+γ2(1−Yi−1))Yi1(1− Yi2)(1− Yi3)

− eγ01−γ02(1−Yi−1)(1− e−γ01+γ02(1−Yi−1))(1− Yi1)Yi2

It is useful to rescale this moment function by
(
eγ01−γ02(1−Yi−1)(1− e−γ01+γ02(1−Yi−1))

)−1

in which case it

simplifies to:

ψ̃
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = eγ02(1−Yi−1)Yi1(1− Yi2)Yi3 + e−γ01+γ02(1−Yi−1)Yi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

Then, for the initial condition Yi0 = 1, Yi−1 = 1, we have

ψ̃
0|0,1
θ (Yi3, Yi2, Yi1, 1, 1) = Yi1(1− Yi2)Yi3 + e−γ01Yi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

Since, this moment function is strictly monotonic in γ1 it identifies γ1 uniquely. This moment coincides with

m11 of Honoré and Weidner (2020). For the initial condition Yi0 = 1, Yi−1 = 0, we get

ψ̃
0|0,1
θ (Yi3, Yi2, Y

1
i−1) = eγ02Yi1(1− Yi2)Yi3 + e−γ01+γ02Yi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

This moment function is strictly monotonic in γ2, thus provided that γ1 is identified, it uniquely identifies
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γ2. This moment coincides with m0,1 in Honoré and Weidner (2020).

Likewise, for π1|1,0(Ai) and π
0|0,Yi0(Ai) to match, we require Yi0 = 0 in which case:

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1) = Yi1 + (1− e−γ1+γ2Yi−1)Yi2e

γ01(1−Yi3)(1− Yi1)

ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1) = Yi1e

(1−Yi2)(γ1−γ2Yi−1))

A valid moment condition that depends on γ1, γ2 is then,

ψ
1|1,0
θ (Yi3, Yi2, Y

1
i−1) = ϕ

1|1,0
θ (Yi3, Yi2, Y

1
i−1)− ϕ

1|1
θ (Yi2, Yi1, Y

0
i−1)

= Yi1 + (1− e−γ1+γ2Yi−1)Yi2e
γ01(1−Yi3)(1− Yi1)− Yi1e

(1−Yi2)(γ1−γ2Yi−1)

= Yi1 + eγ01(1− e−γ1+γ2Yi−1)(1− Yi1)Yi2(1− Yi3) + (1− e−γ1+γ2Yi−1)(1− Yi1)Yi2Yi3

− Yi1(1− Yi2)e
γ1−γ2Yi−1 − Yi1Yi2

= eγ01(1− e−γ1+γ2Yi−1)(1− Yi1)Yi2(1− Yi3) + (1− e−γ1+γ2Yi−1)(1− Yi1)Yi2Yi3

− (eγ1−γ2Yi−1 − 1)Yi1(1− Yi2)

= eγ01(1− e−γ1+γ2Yi−1)(1− Yi1)Yi2(1− Yi3) + (1− e−γ1+γ2Yi−1)(1− Yi1)Yi2Yi3

− eγ1−γ2Yi−1(1− e−γ1+γ2Yi−1)Yi1(1− Yi2)

It is useful to rescale this moment function by
(
eγ01−γ02Yi−1(1− e−γ01+γ02Yi−1)

)−1
in which case it simplifies

to:

ψ̃
1|1,0
θ (Yi3, Yi2, Y

1
i−1) = eγ02Yi−1(1− Yi1)Yi2(1− Yi3) + e−γ01+γ02Yi−1(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

Then, for the initial condition Yi0 = 0, Yi−1 = 0, we have

ψ̃
1|1,0
θ (Yi3, Yi2, Yi1, 0, 0) = (1− Yi1)Yi2(1− Yi3) + e−γ01(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

Since, this moment function is strictly monotonic in γ1 it identifies γ1 uniquely. This moment coincides with

m00 of Honoré and Weidner (2020). For the initial condition Yi0 = 0, Yi−1 = 1, we have

ψ̃
1|1,0
θ (Yi3, Yi2, Yi1, 0, 1) = eγ02(1− Yi1)Yi2(1− Yi3) + e−γ01+γ02(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

This moment function is strictly monotonic in γ2, thus provided that γ1 is identified, it uniquely identifies

γ2. This moment coincides with m1,0 in Honoré and Weidner (2020).

Finally, for π1|1,1(Ai) and π
1|1,Yi0(Ai) to match, we require Yi0 = 1 in which case:

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1) = 1− (1− Yi1)− (1− eγ2(1−Yi−1))(1− Yi2)Yi1

ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1) = Yi1e

γ02(1−Yi2)(1−Yi−1)
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but then the candidate moment function

ψ
1|1,1
θ (Yi3, Yi2, Y

1
i−1) = ϕ

1|1,1
θ (Yi3, Yi2, Y

1
i−1)− ϕ

1|1
θ (Yi2, Yi1, Y

0
i−1)

= 1− (1− Yi1)− (1− eγ2(1−Yi−1))(1− Yi2)Yi1 − Yi1e
γ02(1−Yi2)(1−Yi−1)

= Yi1 − (1− eγ2(1−Yi−1))(1− Yi2)Yi1 − Yi1(1− Yi2)e
γ2(1−Yi−1) − Yi1Yi2

= 0

so there is no identifying information in this moment function for the parameters γ1, γ2.

I Identification of the AR(2) with strictly exogenous regressors

I.1 Identification for T = 3 with variability in the initial condition

By Theorem 1, the transition functions associated to: π
0|0,0
2 (Ai, Xi), π

0|0,1
2 (Ai, Xi), π

1|1,0
2 (Ai, Xi), π

1|1,1
2 (Ai, Xi)

are given by:

ϕ
0|0
θ (Yi3, Yi2, Y

1
i0, Xi) = (1− Yi2)e

Yi3(γ1Yi1−γ2(Yi1−Yi0)−X′
i32β)

ϕ
1|1
θ (Yi3, Yi2, Y

1
0 , Xi) = Yi2e

(1−Yi3)(γ1(1−Yi1)+γ2(Yi1−Yi0)+X′
i32β)

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = 1− Yi1 −

(
1− eγ1Yi0+γ2Yi−1−X′

i31β
)(

1− ϕ
0|0
θ (Yi3, Yi2, Y

1
i0, Xi)

)
(1− Yi1)

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = (1− Yi1) +

(
1− e−γ1Yi0+γ2(1−Yi−1)+X′

i31β
)
ϕ
0|0
θ (Yi3, Yi2, Y

1
i0, Xi)Yi1

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = Yi1 −

(
1− eγ1(1−Yi0)+γ2(1−Yi−1)+X′

i31β
)(

1− ϕ
1|1
θ (Yi3, Yi2, Y

1
0 , Xi)

)
Yi1

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = Yi1 +

(
1− e−γ1(1−Yi0)+γ2Yi−1−X′

i31β
)
ϕ
1|1
θ (Yi3, Yi2, Y

1
0 , Xi)(1− Yi1)

After simplification

ϕ
0|0,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = eγ1Yi0+γ2Yi−1−X′

i31β(1− Yi1) +
(
1− eγ1Yi0+γ2Yi−1−X′

i31β
)
(1− Yi1)(1− Yi2)e

Yi3(γ2Yi0−X′
i32β)

ϕ
0|0,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = (1− Yi1) +

(
1− e−γ1Yi0+γ2(1−Yi−1)+X′

i31β
)
Yi1(1− Yi2)e

Yi3(γ1−γ2(1−Yi0)−X′
i32β)

ϕ
1|1,1
θ (Yi3, Yi2, Y

1
i−1, Xi) = eγ1(1−Yi0)+γ2(1−Yi−1)+X′

i31βYi1 +
(
1− eγ1(1−Yi0)+γ2(1−Yi−1)+X′

i31β
)
Yi1Yi2e

(1−Yi3)(γ2(1−Yi0)+X′
i32β)

ϕ
1|1,0
θ (Yi3, Yi2, Y

1
i−1, Xi) = Yi1 +

(
1− e−γ1(1−Yi0)+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2e

(1−Yi3)(γ1−γ2Yi0+X′
i32β)

Moreover, we have

ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1, Xi) = (1− Yi1)e

Yi2(γ1Yi0−γ2(Yi0−Yi−1)−X′
i21β)

ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1, Xi) = Yi1e

(1−Yi2)(γ1(1−Yi0)+γ2(Yi0−Yi−1)+X′
i21β)
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give:

E
[
ϕ
0|0
θ (Yi2, Yi1, Y

0
i−1, Xi)|Yi−1, Yi0, Ai

]
= π

0|0,Yi0

1 (Ai, Xi) =
1

1 + eγ2Yi0+X′
i2β+Ai

E
[
ϕ
1|1
θ (Yi2, Yi1, Y

0
i−1, Xi)|Yi−1, Yi0, Ai

]
= π

1|1,Yi0

1 (Ai, Xi) =
eγ1+γ2Yi0+X′

i2β+Ai

1 + eγ1+γ2Yi0++X′
i2β+Ai

For π
0|0,0
2 (Ai, Xi) and π

0|0,Yi0

1 (Ai, Xi) to match, we require both Yi0 = 0 and Xi3 = Xi2 in which case:

ϕ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi) = eγ2Yi−1−X′
i31β(1− Yi1) +

(
1− eγ2Yi−1−X′

i31β
)
(1− Yi1)(1− Yi2)

ϕ
0|0
θ (Y 2

i1, 0, Yi−1, Xi) = (1− Yi1)e
Yi2(γ2Yi−1−X′

i31β)

= (1− Yi1)Yi2e
γ2Yi−1−X′

i31β + (1− Yi1)(1− Yi2)

Therefore,

ψ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi) = ϕ
0|0,0
θ (Y 3

i1, 0, Yi−1, Xi)− ϕ
0|0
θ (Y 2

i1, 0, Yi−1, Xi) = 0

So there is no information about the model parameters in this moment function.

For π
0|0,1
2 (Ai, Xi) and π

0|0,Yi0

1 (Ai, Xi) to match, we require both Yi0 = 1 and Xi3 = Xi2 in which case:

ϕ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = (1− Yi1) +
(
1− e−γ1+γ2(1−Yi−1)+X′

i31β
)
Yi1(1− Yi2)e

γ1Yi3

ϕ
0|0
θ (Y 2

i1, 1, Yi−1, Xi) = (1− Yi1)e
Yi2(γ1−γ2(1−Yi−1)−X′

i31β)

Then, a valid moment condition that depends on all model parameters is:

ψ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = ϕ
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi)− ϕ
0|0
θ (Y 2

i1, 1, Yi−1, Xi)

= (1− Yi1)

+
(
1− e−γ1+γ2(1−Yi−1)+X′

i31β
)
eγ1Yi1(1− Yi2)Yi3

+
(
1− e−γ1+γ2(1−Yi−1)+X′

i31β
)
Yi1(1− Yi2)(1− Yi3)

− eγ1−γ2(1−Yi−1)−X′
i31β(1− Yi1)Yi2

− (1− Yi1)(1− Yi2)

=
(
1− e−γ1+γ2(1−Yi−1)+X′

i31β
)
eγ1Yi1(1− Yi2)Yi3

+
(
1− e−γ1+γ2(1−Yi−1)+X′

i31β
)
Yi1(1− Yi2)(1− Yi3)

− eγ1−γ2(1−Yi−1)−X′
i31β(1− e−γ1+γ2(1−Yi−1)+X′

i31β)(1− Yi1)Yi2

Rescaling this moment function by the factor
(
eγ1−γ2(1−Yi−1)−X′

i31β(1− e−γ1+γ2(1−Yi−1)+X′
i31β)

)−1

, one ob-

tains

ψ̃
0|0,1
θ (Y 3

i1, 1, Yi−1, Xi) = eγ2(1−Yi−1)+X′
i31βYi1(1− Yi2)Yi3 + e−γ1+γ2(1−Yi−1)+X′

i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2
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Thus, for for the initial condition Yi0 = 1, Yi−1 = 1, we have

ψ̃
0|0,1
θ (Y 3

i1, 1, 1, Xi) = eX
′
i31βYi1(1− Yi2)Yi3 + e−γ1+X′

i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

which only depends on γ1 and β. Clearly, it is strictly decreasing in γ1 and by conditioning on particular

sets for the regressors, it can be shown that it uniquely identifies γ1, β (See Honoré and Weidner (2020)).

Instead, for the initial condition Yi0 = 1, Yi−1 = 0, we have

ψ̃
0|0,1
θ (Y 3

i1, 1, 0, Xi) = eγ2+X′
i31βYi1(1− Yi2)Yi3 + e−γ1+γ2+X′

i31βYi1(1− Yi2)(1− Yi3)− (1− Yi1)Yi2

Provided that γ1, β are identified, the strict monotonicity of the moment functions in γ2 ensure that γ2 is

identified.

Analogously, for π
1|1,0
2 (Ai, Xi) and π

0|0,Yi0

1 (Ai) to match, we require both Yi0 = 0 and Xi3 = Xi2 in which

case:

ϕ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = Yi1 +
(
1− e−γ1+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2e

γ1(1−Yi3)

ϕ
1|1
θ (Y 2

i1, 0, Yi−1, Xi) = Yi1e
(1−Yi2)(γ1−γ2Yi−1+X′

i31β)

Then, a valid moment function that depends on all model parameters is:

ψ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = ϕ
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi)− ϕ
1|1
θ (Y 2

i1, 0, Yi−1, Xi)

= Yi1+

+
(
1− e−γ1+γ2Yi−1−X′

i31β
)
eγ1(1− Yi1)Yi2(1− Yi3)

+
(
1− e−γ1+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2Yi3

− eγ1−γ2Yi−1+X′
i31βYi1(1− Yi2)

− Yi1Yi2

=
(
1− e−γ1+γ2Yi−1−X′

i31β
)
eγ1(1− Yi1)Yi2(1− Yi3)

+
(
1− e−γ1+γ2Yi−1−X′

i31β
)
(1− Yi1)Yi2Yi3

− eγ1−γ2Yi−1+X′
i31β

(
1− e−γ1+γ2Yi−1−X′

i31β
)
Yi1(1− Yi2)

Rescaling this moment function by the factor

(
eγ1−γ2Yi−1+X′

i31β
(
1− e−γ1+γ2Yi−1−X′

i31β
))−1

, one obtains

ψ̃
1|1,0
θ (Y 3

i1, 0, Yi−1, Xi) = eγ2Yi−1−X′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1+γ2Yi−1−X′

i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

For the initial condition Yi0 = 0, Yi−1 = 0, we have

ψ̃
1|1,0
θ (Y 3

i1, 0, 0, Xi) = e−X′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1−X′

i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

This moment function also only depends on γ1, β. Moreover, it is strictly decreasing in γ1 and by using
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different conditioning sets for the regressors, one can show that it uniquely identifies γ1, β. Instead, for the

initial condition Yi0 = 0, Yi−1 = 1, we obtain

ψ̃
1|1,0
θ (Y 3

i1, 0, 1, Xi) = eγ2−X′
i31β(1− Yi1)Yi2(1− Yi3) + e−γ1+γ2−X′

i31β(1− Yi1)Yi2Yi3 − Yi1(1− Yi2)

Provided that γ1, β is identified, the strict monotonicity of this moment function in γ2 implies that it identifies

γ2 uniquely.

Lastly, for π
1|1,1
2 (Ai) and π

1|1,Yi0

1 (Ai) to match, we require both Yi0 = 1 and Xi3 = Xi2 in which case:

ϕ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi) = eγ2(1−Yi−1)+X′
i31βYi1 +

(
1− eγ2(1−Yi−1)+X′

i31β
)
Yi1Yi2

ϕ
1|1
θ (Y 2

i1, 1, Yi−1, Xi) = Yi1e
(1−Yi2)(γ2(1−Yi−1)+X′

i21β)

= Yi1(1− Yi2)e
γ2(1−Yi−1)+X′

i21β + Yi1Yi2

Then, a valid moment function

ψ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi) = ϕ
1|1,1
θ (Y 3

i1, 1, Yi−1, Xi)− ϕ
1|1
θ (Y 2

i1, 1, Yi−1, Xi)

= 0

is identically zero and hence contains no information about the model parameters.

I.2 Identification at infinity with T = 4

We recall from the discussion of Section 4.8 that T = 4 and Kx ≥ 2 so that there are at least 2

exogenous explanatory variables. We have Xit = (Wit, R
′
it)

′ ∈ RKx , β = (βW , β′
R)

′ ∈ RKx and

Zi = (R′
i,Wi1,Wi3,Wi4)

′ ∈ R4Kx−1 . Our goal is to prove Theorem 3 under Assumptions 1 and 2.

Preliminary results. By Theorem 1, the transition functions associated to:

π
0|0,0
3 (Ai, Xi), π

0|0,1
3 (Ai, Xi), π

1|1,0
3 (Ai, Xi),

π
1|1,1
3 (Ai, Xi) are given by:

ϕ
0|0
θ (Yi4, Yi3, Y

2
i1, Xi) = (1− Yi3)e

Yi4(γ1Yi2−γ2(Yi2−Yi1)−X′
i43β)

ϕ
1|1
θ (Yi4, Yi3, Y

2
i1, Xi) = Yi3e

(1−Yi4)(γ1(1−Yi2)+γ2(Yi2−Yi1)+X′
i43β)

ϕ
0|0,0
θ (Yi4, Yi3, Y

2
i0, Xi) = 1− Yi2 −

(
1− eγ1Yi1+γ2Yi0−X′

i42β
)(

1− ϕ
0|0
θ (Yi4, Yi3, Y

2
i1, Xi)

)
(1− Yi2)

ϕ
0|0,1
θ (Yi4, Yi3, Y

2
i0, Xi) = (1− Yi2) +

(
1− e−γ1Yi1+γ2(1−Yi0)+X′

i42β
)
ϕ
0|0
θ (Yi4, Yi3, Y

2
i1, Xi)Yi2

ϕ
1|1,1
θ (Yi4, Yi3, Y

2
i0, Xi) = Yi2 −

(
1− eγ1(1−Yi1)+γ2(1−Yi0)+X′

i42β
)(

1− ϕ
1|1
θ (Yi4, Yi3, Y

2
1 , Xi)

)
Yi2

ϕ
1|1,0
θ (Yi4, Yi3, Y

2
i0, Xi) = Yi2 +

(
1− e−γ1(1−Yi1)+γ2Yi0−X′

i42β
)
ϕ
1|1
θ (Yi4, Yi3, Y

2
1 , Xi)(1− Yi2)
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After simplification, one gets

ϕ
0|0,0
θ (Yi4, Yi3, Y

2
i0, Xi) = eγ1Yi1+γ2Yi0−X′

i42β(1− Yi2) +
(
1− eγ1Yi1+γ2Yi0−X′

i42β
)
(1− Yi2)(1− Yi3)e

Yi4(γ2Yi1−X′
i43β)

ϕ
0|0,1
θ (Yi4, Yi3, Y

2
i0, Xi) = (1− Yi2) +

(
1− e−γ1Yi1+γ2(1−Yi0)+X′

i42β
)
Yi2(1− Yi3)e

Yi4(γ1−γ2(1−Yi1)−X′
i43β)

ϕ
1|1,1
θ (Yi4, Yi3, Y

2
i0, Xi) = eγ1(1−Yi1)+γ2(1−Yi0)+X′

i42βYi2 +
(
1− eγ1(1−Yi1)+γ2(1−Yi0)+X′

i42β
)
Yi2Yi3e

(1−Yi4)(γ2(1−Yi1)+X′
i43β)

ϕ
1|1,0
θ (Yi4, Yi3, Y

2
i0, Xi) = Yi2 +

(
1− e−γ1(1−Yi1)+γ2Yi0−X′

i42β
)
(1− Yi2)Yi3e

(1−Yi4)(γ1−γ2Yi1+X′
i43β)

Then, Lemma 4 and Proposition 3 imply that a set of valid moment functions for arbitrary regressors are:

ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) = ϕ

0|0,0
θ (Yi4, Yi3, Y

2
i0, Xi)− ζ

0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)

= ϕ
0|0,0
θ (Yi4, Yi3, Y

2
i0, Xi)− (1− Yi1)−

(
1− e−γ1Yi0−γ2Yi−1+X′

i41β
)
ϕ
0|0,0
θ (Yi4, Yi3, Y

2
i0, Xi)Yi1

= (1− Yi1)ϕ
0|0,0
θ (Yi4, Yi3, Y

2
i0, Xi) + e−γ1Yi0−γ2Yi−1+X′

i41βYi1ϕ
0|0,0
θ (Yi4, Yi3, Y

2
i0, Xi)− (1− Yi1)

ψ
0|0,1
θ (Yi4, Yi3, Y

2
i−1, Xi) = ϕ

0|0,1
θ (Yi4, Yi3, Y

2
i0, Xi)− ζ

0|0,1
θ (Yi4, Yi3, Y

2
i−1, Xi)

= ϕ
0|0,1
θ (Yi4, Yi3, Y

2
i0, Xi)− (1− Yi1)−

(
1− e−γ1Yi0+γ2(1−Yi−1)+X′

i41β
)
ϕ
0|01
θ (Yi4, Yi3, Y

2
i0, Xi)Yi1

= (1− Yi1)ϕ
0|0,1
θ (Yi4, Yi3, Y

2
i0, Xi) + e−γ1Yi0+γ2(1−Yi−1)+X′

i41βϕ
0|0,1
θ (Yi4, Yi3, Y

2
i0, Xi)− (1− Yi1)

ψ
1|1,1
θ (Yi4, Yi3, Y

2
i−1, Xi) = ϕ

1|1,1
θ (Yi4, Yi3, Y

2
i0, Xi)− ζ

1|1,1
θ (Yi4, Yi3, Y

2
i−1, Xi)

= ϕ
1|1,1
θ (Yi4, Yi3, Y

2
i0, Xi)− Yi1 −

(
1− e−γ1(1−Yi0)−γ2(1−Yi−1)−X′

i41β
)
ϕ
1|1,1
θ (Yi4, Yi3, Y

2
i0, Xi)(1− Yi1)

= Yi1ϕ
1|1,1
θ (Yi4, Yi3, Y

2
i0, Xi) + e−γ1(1−Yi0)−γ2(1−Yi−1)−X′

i41β(1− Yi1)ϕ
1|1,1
θ (Yi4, Yi3, Y

2
i0, Xi)− Yi1

ψ
1|1,0
θ (Yi4, Yi3, Y

2
i−1, Xi) = ϕ

1|1,0
θ (Yi4, Yi3, Y

2
i0, Xi)− ζ

1|1,0
θ (Yi4, Yi3, Y

2
i−1, Xi)

= ϕ
1|1,0
θ (Yi4, Yi3, Y

2
i0, Xi)− Yi1 −

(
1− e−γ1(1−Yi0)+γ2Yi−1−X′

i41β
)
ϕ
1|1,0
θ (Yi4, Yi3, Y

2
i0, Xi)(1− Yi1)

= Yi1ϕ
1|1,0
θ (Yi4, Yi3, Y

2
i0, Xi) + e−γ1(1−Yi0)+γ2Yi−1−X′

i41β(1− Yi1)ϕ
1|1,0
θ (Yi4, Yi3, Y

2
i0, Xi)− Yi1

which after tedious simplifications and rearrangement yield

ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) =

(
eγ2Yi0−X′

i42β − 1
)
(1− Yi1)(1− Yi2)Yi3

+

[
eγ2Yi0−X′

i42β +
(
1− eγ2Yi0−X′

i42β
)
e−X′

i43β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ eγ1(1−Yi0)+γ2(Yi0−Yi−1)+X′
i21βYi1(1− Yi2)Yi3

+ e−γ1Yi0−γ2Yi−1+X′
i41β

[
eγ1+γ2Yi0−X′

i42β +
(
1− eγ1+γ2Yi0−X′

i42β
)
eγ2−X′

i43β

]
Yi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

− (1− Yi1)Yi2
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ψ
0|0,1
θ (Yi4, Yi3, Y

2
i−1, Xi) =

[(
1− eγ2(1−Yi0)+X′

i42β
)
eγ1−γ2−X′

i43β − 1

]
(1− Yi1)Yi2(1− Yi3)Yi4

− eγ2(1−Yi0)+X′
i42β(1− Yi1)Yi2(1− Yi3)(1− Yi4)

+ e−γ1Yi0+γ2(1−Yi−1)+X′
i41βYi1(1− Yi2)

+ e−γ1Yi0+γ2(1−Yi−1)+X′
i41β

(
1− e−γ1+γ2(1−Yi0)+X′

i42β
)
eγ1−X′

i43βYi1Yi2(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X′
i41β

(
1− e−γ1+γ2(1−Yi0)+X′

i42β
)
Yi1Yi2(1− Yi3)(1− Yi4)

− (1− Yi1)Yi2Yi3

ψ
1|1,1
θ (Yi4, Yi3, Y

2
i−1, Xi) =

(
eγ2(1−Yi0)+X′

i42β − 1
)
Yi1Yi2(1− Yi3)

+

[
eγ2(1−Yi0)+X′

i42β +
(
1− eγ2(1−Yi0)+X′

i42β
)
eX

′
i43β − 1

]
Yi1Yi2Yi3(1− Yi4)

+ eγ1Yi0+γ2(Yi−1−Yi0)−X′
i21β(1− Yi1)Yi2(1− Yi3)

+ e−γ1(1−Yi0)−γ2(1−Yi−1)−X′
i41β

[
eγ1+γ2(1−Yi0)+X′

i42β +
(
1− eγ1+γ2(1−Yi0)+X′

i42β
)
eγ2+X′

i43β

]
(1− Yi1)Yi2Yi3(1− Yi4)

+ e−γ1(1−Yi0)−γ2(1−Yi−1)−X′
i41β(1− Yi1)Yi2Yi3Yi4

− Yi1(1− Yi2)

ψ
1|1,0
θ (Yi4, Yi3, Y

2
i−1, Xi) =

[(
1− eγ2Yi0−X′

i42β
)
eγ1−γ2+X′

i43β − 1

]
Yi1(1− Yi2)Yi3(1− Yi4)

− eγ2Yi0−X′
i42βYi1(1− Yi2)Yi3Yi4

+ e−γ1(1−Yi0)+γ2Yi−1−X′
i41β(1− Yi1)Yi2

+ e−γ1(1−Yi0)+γ2Yi−1−X′
i41β

(
1− e−γ1+γ2Yi0−X′

i42β
)
eγ1+X′

i43β(1− Yi1)(1− Yi2)Yi3(1− Yi4)

+ e−γ1(1−Yi0)+γ2Yi−1−X′
i41β

(
1− e−γ1+γ2Yi0−X′

i42β
)
(1− Yi1)(1− Yi2)Yi3Yi4

− Yi1(1− Yi2)(1− Yi3)

Proof of Theorem 3. Define, the “limiting” moment function

ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi) = −(1− Yi1)(1− Yi2)Yi3

+
[
eX

′
i34β − 1

]
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0+γ2(1−Yi−1)+X′
i31βYi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+X′
i41βYi1(1− Yi2)(1− Yi3)(1− Yi4)

(17)

For s ∈ {−,+}Kx , consider the moment objective

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
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We will show in two successive steps (a) and (b) that

Ψ
0|0,0
s,y0 (θ) = lim

w2→∞
E
[
ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
(a)

= E
[
ψ
0|0,0
θ,∞ (Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = ∞
]

(b)

To establish (a), we start by observing that the history sequence (1−Yi1)Yi2 featuring in ψ0|0,0
θ has expectation

zero. To see this, note that by iterated expectations

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
= lim

w2→∞

∫
eγ02y0+x′

2β0+a

1 + eγ02y0+x′
2β0+a

1

1 + eγ01y0+γ02yi−1+x′
1β0+a

p(a, z|y0,Xs, w2)dadz

Now, p(a, z|y0,Xs, w2) = p(a|y0, z, w2)p(z|y0,Xs, w2) = p(a|y0, z, w2)
p(z|y0,w2)1{Xi∈Xs}∫

Xs
p(z|y0,w2)dz

. Hence, by part (iii)

of Assumption 2, an integrable dominating function of the integrand is

eγ02y0+x′
2β0+a

1 + eγ02y0+x′
2β0+Ai

1

1 + eγ01y0+γ02yi−1+x′
1β0+a

p(a, z|y0,Xs, w2) ≤ d0(a)
d2(z)∫

Xs
d1(z)dz

Moreover, by parts (ii)-(iii) of Assumption 2 and the Dominated Convergence Theorem,

lim
w2→∞

p(a, z|y0,Xs, w2) = q(a|y0, z)
q(z|y0)1{Xi ∈ Xs}∫

Xs
q(z|y0)dz

≡ q(a, z|y0,Xs)

Hence another application of the Dominated Convergence Theorem gives

lim
w2→∞

E
[
(1− Yi1)Yi2|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
=

∫
lim

w2→∞

eγ02y0+x′
2β0+a

1 + eγ02y0+x′
2β0+a

1

1 + eγ01y0+γ02yi−1+x′
1β0+a

p(a, z|y0,Xs, w2)dadz

=

∫
0× q(a, z|y0,Xs)dadz

= 0

where the third line follows from the fact that limw2→∞ ew2βW = 0 by Assumption 1. Applying the same

arguments to each remaining summand of ψ
0|0,0
θ and collecting terms delivers (a). To obtain (b), we note that

by part (iv) of Assumption 1, w2 7→ E
[
ψ
0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi)|Y 0

i = y0, Xi ∈ Xs,Wi2 = w2

]
is continuous

with a well defined limit at infinity in light of (a). As a result, we can work directly with its continuous

extension at infinity.

Let us focus on the initial condition y0 = y−1 = 0. It is clear from Equation (10) that Ψ
0|0,0
s,0,0(θ) does

not depend on γ1. Furthermore, by parts (i) of Assumption 2 we note that we have the following integrable
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dominating functions for the derivative:∣∣∣∣∣∣∂ψ
0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi)

∂γ2

∣∣∣∣∣∣ = eγ2+X′
i31βYi1(1− Yi2)(1− Yi3)Yi4 ≤ sup

g2∈G2,b∈B
eg2+2max(|x̄|,|x|)∥b∥1

∣∣∣∣∣∣∂ψ
0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi)

∂βk

∣∣∣∣∣∣ =
∣∣∣∣Xik,34e

X′
i34β(1− Yi1)(1− Yi2)(1− Yi3)Yi4

+Xik,31e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)Yi4

+Xik,41e
γ2+X′

i31βYi1(1− Yi2)(1− Yi3)(1− Yi4)

∣∣∣∣
≤
∣∣Xik,34

∣∣eX′
i34β +

∣∣Xik,31

∣∣eγ2+X′
i31β +

∣∣Xik,41

∣∣eγ2+X′
i31β

≤ 2max(|x̄|, |x|) sup
b∈B

e2max(|x̄|,|x|)∥b∥1(1 + 2 sup
g2∈G2

eg2)

Hence, by Leibniz integral rule, we get

∂Ψ
0|0,0
s,0,0(θ)

∂γ2

= E

∂ψ0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi)

∂γ2
|Y 0

i = (0, 0), Xi ∈ Xs,Wi2 = ∞


= E

[
eγ2+X′

i31βYi1(1− Yi2)(1− Yi3)Yi4|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞

]

= E

eγ2+X′
i31β E

[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai

]
︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


> 0
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Similarly,

∂Ψ
0|0,0
s,0,0(θ)

∂βk

= E

∂ψ0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi)

∂βk
|Y 0

i = (0, 0), Xi ∈ Xs,Wi2 = ∞



= E

Xik,34e
X′

i34β E
[
(1− Yi1)(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai

]
︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞



+ E

Xik,31e
γ2+X′

i31β E
[
Yi1(1− Yi2)(1− Yi3)Yi4|Y 0

i = (0, 0), Zi,Wi2 = ∞, Ai

]
︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


+ E

[
Xik,41e

γ2+X′
i31β×

E
[
Yi1(1− Yi2)(1− Yi3)(1− Yi4)|Y 0

i = (0, 0), Zi ∈ Xs,Wi2 = ∞, Ai

]
︸ ︷︷ ︸

>0

|Y 0
i = (0, 0), Xi ∈ Xs,Wi2 = ∞


The last display shows that

∂Ψ
0|0,0
s,0,0(θ)

∂βk
> 0 if sk = + and

∂Ψ
0|0,0
s,0,0(θ)

∂βk
< 0 if sk = −. Therefore, appealing to

Lemma 2 in Honoré and Weidner (2020), we conclude that the 2Kx system of equations in Kx + 1 unkowns

given by:

Ψ
0|0,0
s,0,0(θ) = 0, ∀s ∈ {−,+}Kx

has at most one solution. It is precisely (γ02, β0), since the validity of ψ
0|0,0
θ (Yi4, Yi3, Y

2
i−1, Xi) for arbitrary

Xi directly implies the validity of the limiting moment ψ
0|0,0
θ,−∞(Yi4, Yi3, Y

2
i−1, Zi) at “Wi2 = ∞”. Then, notice

that for any other initial condition y0 ∈ {(0, 1), (1, 0), (1, 1)}, the objective Ψ
0|0,0
s,y0 (θ) is strictly monotonic in

γ1. Hence, given (γ02, β0), it point identifies γ01. This concludes the proof of Theorem 3.
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J Proof of Lemma 5

The proposed functional form for the transition function ϕ
(0,0)|(0,0)
θ (Yit+1, Yit, Yit−1, Xi) implies that it is null

when Yit ̸= (0, 0). Hence

E
[
ϕ
(0,0)|(0,0)
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

1

(1 + eγ11Y1,it−1+γ12Y2,it−1+X′
1,itβ1+A1,i)

1

(1 + eγ21Y1,it−1+γ22Y2,it−1+X′
2,itβ2+A2,i)

×(
eX

′
1,it+1β1+A1,i

1 + eX
′
1,it+1β1+A1,i

eX
′
2,it+1β2+A2,i

1 + eX
′
2,it+1β2+A2,i

ϕ
(0,0)|(0,0)
θ ((1, 1), (0, 0), Yit−1, Xi)+

eX
′
1,it+1β1+A1,i

1 + eX
′
1,it+1β1+A1,i

1

1 + eX
′
2,it+1β2+A1,i

ϕ
(0,0)|(0,0)
θ ((1, 0), (0, 0), Yit−1, Xi)+

1

1 + eX
′
1,it+1β1+A1,i

eX
′
2,it+1β2+A2,i

1 + eX
′
2,it+1β2+A2,i

ϕ
(0,0)|(0,0)
θ ((0, 1), (0, 0), Yit−1, Xi)+

1

1 + eX
′
1,it+1β1+A1,i

1

1 + eX
′
2,it+1β2+A2,i

ϕ
(0,0)|(0,0)
θ ((0, 0), (0, 0), Yit−1, Xi)

)
Thus, to obtain the transition probability π

(0,0|(0,0)
t (Ai, Xi) =

1

1+eX1,it+1β1+A1,i

1

1+eX2,it+1β2+A2,i
, we must set:

ϕ
(0,0)|(0,0)
θ ((1, 1), (0, 0), Yit−1, Xi) = eγ11Y1,it−1+γ12Y2,it−1+(X1,it−X1,it+1)β1+γ21Y1,it−1+γ22Y2,it−1+(X2,it−X2,it+1)β2

ϕ
(0,0)|(0,0)
θ ((1, 0), (0, 0), Yit−1, Xi) = eγ11Y1,it−1+γ12Y2,it−1+(X1,it−X1,it+1)β1

ϕ
(0,0)|(0,0)
θ ((0, 1), (0, 0), Yit−1, Xi) = eγ21Y1,it−1+γ22Y2,it−1+(X2,it−X2,it+1)β2

ϕ
(0,0)|(0,0)
θ ((0, 0), (0, 0), Yit−1, Xi) = 1

ϕ
(0,0)|(0,0)
θ (k, l, Yit−1, Xi) = 0, ∀k ∈ Y, ∀l ∈ Y \ {(0, 0)}

This can be expressed compactly as:

ϕ
(0,0)|(0,0)
θ (Y t+1

it−1, Xi) = (1− Y1,it)(1− Y2,it)×

eY1,it+1(γ11Y1,it−1+γ12Y2,it−1−∆X′
1,it+1β1)+Y2,it+1(γ21Y1,it−1+γ22Y2,it−1−∆X′

2,it+1β2)
(18)
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Similarly, the proposed functional form for the transition function ϕ
(1,0)|(1,0)
θ (Yit+1, Yit, Yit−1, Xi) implies that

it is null when Yit ̸= (1, 0). Hence

E
[
ϕ
(1,0)|(1,0)
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

eγ11Y1,it−1+γ12Y2,it−1+X1,itβ1+A1,i

(1 + eγ11Y1,it−1+γ12Y2,it−1+X1,itβ1+A1,i)

1

(1 + eγ21Y1,it−1+γ22Y2,it−1+X2,itβ2+A2,i)
×(

eγ11+X′
1,it+1β1+A1,i

1 + eγ11+X′
1,it+1β1+A1,i

eγ21+X′
2,it+1β2+A2,i

1 + eγ21+X′
2,it+1β2+A2,i

ϕ
(1,0)|(1,0)
θ ((1, 1), (1, 0), Yit−1, Xi)+

eγ11+X′
1,it+1β1+A1,i

1 + eγ11+X′
1,it+1β1+A1,i

1

1 + eγ21+X′
2,it+1β2+A1,i

ϕ
(1,0)|(1,0)
θ ((1, 0), (1, 0), Yit−1, Xi)+

1

1 + eγ11+X′
1,it+1β1+A1,i

eγ21+X′
2,it+1β2+A2,i

1 + eγ21+X′
2,it+1β2+A2,i

ϕ
(1,0)|(1,0)
θ ((0, 1), (1, 0), Yit−1, Xi)+

1

1 + eγ11+X′
1,it+1β1+A1,i

1

1 + eγ21+X′
2,it+1β2+A2,i

ϕ
(1,0)|(1,0)
θ ((0, 0), (1, 0), Yit−1, Xi)

)

Thus, to obtain the transition probability π
(1,0)|(1,0)
t (Ai, Xi) = e

γ11+X′
1,it+1β1+A1,i

1+e
γ11+X′

1,it+1
β1+A1,i

1

1+e
γ21+X′

2,it+1
β2+A2,i

, we

must set:

ϕ
(1,0)|(1,0)
θ ((1, 1), (1, 0), Yit−1, Xi) = eγ21(Y1,it−1−1)+γ22Y2,it−1−∆X2,it+1β2

ϕ
(1,0)|(1,0)
θ ((1, 0), (1, 0), Yit−1, Xi) = 1

ϕ
(1,0)|(1,0)
θ ((0, 1), (1, 0), Yit−1, Xi) = e−(γ11(Y1,it−1−1)+γ12Y2,it−1−∆X1,itβ1)+γ21(Y1,it−1−1)+γ22Y2,it−1−∆X2,it+1β2

ϕ
(1,0)|(1,0)
θ ((0, 0), (1, 0), Yit−1, Xi) = e−(γ11(Y1,it−1−1)+γ12Y2,it−1−∆X1,it+1β1)

ϕ
(1,0)|(1,0)
θ (k, l, Yit−1, Xi) = 0, ∀k ∈ Y, ∀l ∈ Y \ {(1, 0)}

This can be expressed compactly as:

ϕ
(1,0)|(1,0)
θ (Y t+1

it−1, Xi) = Y1,it(1− Y2,it)

e−(1−Y1,it+1)(γ11(Y1,it−1−1)+γ12Y2,it−1−∆X1,itβ1)+Y2,it+1(γ21(Y1,it−1−1)+γ22Y2,it−1−∆X2,it+1β2)
(19)
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Analogously, the proposed functional form for the transition function ϕ
(0,1)|(0,1)
θ (Yit+1, Yit, Yit−1, Xi) implies

that it is null when Yit ̸= (0, 1). Hence

E
[
ϕ
(0,1)|(0,1)
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

1

(1 + eγ11Y1,it−1+γ12Y2,it−1+X1,itβ1+A1,i)

eγ21Y1,it−1+γ22Y2,it−1+X2,itβ2+A2,i

(1 + eγ21Y1,it−1+γ22Y2,it−1+X2,itβ2+A2,i)
×(

eγ12+X′
1,it+1β1+A1,i

1 + eγ12+X′
1,it+1β1+A1,i

eγ22+X′
2,it+1β2+A2,i

1 + eγ22+X′
2,it+1β2+A2,i

ϕ
(0,1)|(0,1)
θ ((1, 1), (0, 1), Yit−1, Xi)+

eγ12+X′
1,it+1β1+A1,i

1 + eγ12+X′
1,it+1β1+A1,i

1

1 + eγ22+X′
2,it+1β2+A1,i

ϕ
(0,1)|(0,1)
θ ((1, 0), (0, 1), Yit−1, Xi)+

1

1 + eγ12+X′
1,it+1β1+A1,i

eγ22+X′
2,it+1β2+A2,i

1 + eγ22+X′
2,it+1β2+A2,i

ϕ
(0,1)|(0,1)
θ ((0, 1), (0, 1), Yit−1, Xi)+

1

1 + eγ12+X′
1,it+1β1+A1,i

1

1 + eγ22+X′
2,it+1β2+A2,i

ϕ
(0,1)|(0,1)
θ ((0, 0), (0, 1), Yit−1, Xi)

)

Thus, to obtain the transition probability π
(0,1)|(0,1)
t (Ai, Xi) = 1

1+e
γ12+X′

1,it+1
β1+A1,i

e
γ22+X′

2,it+1β2+A2,i

1+e
γ22+X′

2,it+1
β2+A2,i

, we

must set:

ϕ
(0,1)|(0,1)
θ ((1, 1), (0, 1), Yit−1, Xi) = eγ11Y1,it−1+γ12(Y2,it−1−1)−∆X′

1,it+1β1

ϕ
(0,1)|(0,1)
θ ((1, 0), (0, 1), Yit−1, Xi) = eγ11Y1,it−1+γ12(Y2,it−1−1)−∆X′

1,it+1β1−(γ21Y1,it−1+γ22(Y2,it−1−1)−∆X′
2,it+1β2)

ϕ
(0,1)|(0,1)
θ ((0, 1), (0, 1), Yit−1, Xi) = 1

ϕ
(0,1)|(0,1)
θ ((0, 0), (0, 1), Yit−1, Xi) = e−(γ21Y1,it−1+γ22(Y2,it−1−1)−∆X′

2,it+1β2)

ϕ
(0,1)|(0,1)
θ (k, l, Yit−1, Xi) = 0, ∀k ∈ Y, ∀l ∈ Y \ {(0, 1)}

This can be expressed compactly as:

ϕ
(0,1)|(0,1)
θ (Y t+1

it−1, Xi) = (1− Y1,it)Y2,it×

eY1,it+1(γ11Y1,it−1+γ12(Y2,it−1−1)−∆X′
1,it+1β1)−(1−Y2,it+1)(γ21Y1,it−1+γ22(Y2,it−1−1)−∆X′

2,it+1β2)
(20)
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Finally, the proposed functional form for the transition function ϕ
(1,1)|(1,1)
θ (Yit+1, Yit, Yit−1, Xi) implies that

it is null when Yit ̸= (1, 1). Hence

E
[
ϕ
(1,1)|(1,1)
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

eγ11Y1,it−1+γ12Y2,it−1+X1,itβ1+A1,i

(1 + eγ11Y1,it−1+γ12Y2,it−1+X1,itβ1+A1,i)

eγ21Y1,it−1+γ22Y2,it−1+X2,itβ2+A2,i

(1 + eγ21Y1,it−1+γ22Y2,it−1+X2,itβ2+A2,i)
×(

eγ11+γ12+X′
1,it+1β1+A1,i

1 + eγ11+γ12+X′
1,it+1β1+A1,i

eγ21+γ22+X′
2,it+1β2+A2,i

1 + eγ21+γ22+X′
2,it+1β2+A2,i

ϕ
(1,1)|(1,1)
θ ((1, 1), (1, 1), Yit−1, Xi)+

eγ11+γ12+X′
1,it+1β1+A1,i

1 + eγ11+γ12+X′
1,it+1β1+A1,i

1

1 + eγ21+γ22+X′
2,it+1β2+A1,i

ϕ
(1,1)|(1,1)
θ ((1, 0), (1, 1), Yit−1, Xi)+

1

1 + eγ11+γ12+X′
1,it+1β1+A1,i

eγ21+γ22+X′
2,it+1β2+A2,i

1 + eγ21+γ22+X′
2,it+1β2+A2,i

ϕ
(1,1)|(1,1)
θ ((0, 1), (1, 1), Yit−1, Xi)+

1

1 + eγ11+γ12+X′
1,it+1β1+A1,i

1

1 + eγ21+γ22+X′
2,it+1β2+A2,i

ϕ
(1,1)|(1,1)
θ ((0, 0), (1, 1), Yit−1, Xi)

)

Thus, to obtain the transition probability π
(1,1)|(1,1)
t (Ai, Xi) = e

γ12+X′
1,it+1β1+A1,i

1+e
γ12+X′

1,it+1
β1+A1,i

e
γ22+X′

2,it+1β2+A2,i

1+e
γ22+X′

2,it+1
β2+A2,i

, we

must set:

ϕ
(1,1)|(1,1)
θ ((1, 1), (1, 1), Yit−1, Xi) = 1

ϕ
(1,1)|(1,1)
θ ((1, 0), (1, 1), Yit−1, Xi) = e−(γ21(Y1,it−1−1)+γ22(Y2,it−1−1)−∆X′

2,it+1β2))

ϕ
(1,1)|(1,1)
θ ((0, 1), (1, 1), Yit−1, Xi) = e−(γ11(Y1,it−1−1)+γ12(Y2,it−1−1)−∆X′

1,it+1β1))

ϕ
(0,1)|(0,1)
θ ((0, 0), (1, 1), Yit−1, Xi) = e−(γ21(Y1,it−1−1)+γ22(Y2,it−1−1)−∆X′

2,it+1β2))−(γ11(Y1,it−1−1)+γ12(Y2,it−1−1)−∆X′
1,it+1β1))

ϕ
(1,1)|(1,1)
θ (k, l, Yit−1, Xi) = 0, ∀k ∈ Y, ∀l ∈ Y \ {(1, 1)}

This can be expressed compactly as:

ϕ
(1,1)|(1,1)
θ (Y t+1

it−1, Xi) = Y1,itY2,it×

e−(1−Y1,it+1)(γ11(Y1,it−1−1)+γ12(Y2,it−1−1)−∆X′
1,it+1β1))−(1−Y2,it+1)(γ21(Y1,it−1−1)+γ22(Y2,it−1−1)−∆X′

2,it+1β2))
(21)

Given equations (18),(19),(20),(21), we can write succintly, ∀k ∈ Y, when M = 2,

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e(Y1,it+1−k1)(γ11(Y1,it−1−k1)+γ12(Y2,it−1−k2)−∆X′

1,it+1β1)×

e(Y2,it+1−k1)(γ21(Y1,it−1−k1)+γ22(Y2,it−1−k2)−∆X2,it+1β2)

In light of the expressions obtained for the bivariate VAR(1) case, we can conjecture that the transition

function associated to π
k|k
t (Ai, Xi), k ∈ Y for the general M -variate case takes the form

ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi) = 1{Yit = k}e

∑M
m=1(Ym,it+1−km)(

∑M
j=1 γmj(Yj,it−1−kj)−∆X′

m,it+1βm)
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We verify that this is indeed correct by direct calculation.

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
= P (Yit = k|Yi0, Y t−1

i1 , Xi, Ai)×∑
l∈Y

P (Yit+1 = l|Yi0, Y t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=

M∏
m=1

ekm(
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

×

∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

e
∑M

m=1(lm−km)(
∑M

j=1 γmj(Yj,it−1−kj)−∆X′
m,it+1βm)

=
∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

=

M∏
m=1

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

Now, noting that

∑
l∈Y

M∏
m=1

elm(
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i) =

M∏
m=1

(1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

we finally get

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi, Ai

]
=

M∏
m=1

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i

1

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

M∏
m=1

(1 + e
∑M

j=1 γmjYj,it−1+X′
m,itβm+Am,i)

=

M∏
m=1

ekm(
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i)

1 + e
∑M

j=1 γmjkj+X′
m,it+1βm+Am,i

= π
k|k
t (Ai, Xi)

which concludes the proof.
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K Proof of Lemma 6

By definition, for T ≥ 3, and for t, s such that T − 1 ≥ t > s ≥ 1:

E
[
ζ
k|k
θ (Y t+1

it−1, Y
s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai)+∑
l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}ϕk|kθ (Y t+1

it−1, Xi)|Yi0, Y s−1
i1 , Xi, Ai

]

=

M∏
m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
+

∑
l∈Y\{k}

ω
k|k
t,s,l(θ)π

k|k
t (Ai, Xi)P (Yis = l|Yi0, Y s−1

i1 , Xi, Ai)

=

M∏
m=1

ekm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i
+

∑
l∈Y\{k}

[
1− e

∑M
j=1(lj−kj)

[
κ
k|k
j,t (θ)−µj,s(θ)

]] M∏
m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i

elm(µm,s(θ)+Am,i)

1 + eµm,s(θ)+Am,i

=

M∏
m=1

ekm(κ
k|k
m,t(θ)+Am,i)

1 + eκ
k|k
m,t(θ)+Am,i

= π
k|k
t (Ai, Xi)

The first line follows from the measurability of the weight ω
k|k
t,s,l(θ) with respect to the conditioning set

and the linearity of conditional expectations. The second line uses the definition of µj,s(θ) and follows from

the law of iterated expectations and Lemma 6. The third line makes use of the definition of κ
k|k
m,t(θ) and

ω
k|k
t,s,l(θ) and the penultime line uses Appendix Lemma 10.

L Dynamic network formation with transitivity

Graham (2013) studies a variant of model (11) to describe network formation amongst groups of 3 individuals.

This is a panel data setting where a large sample of many such groups and the evolution of their social ties

are observed over T = 3 periods (4 counting the initial condition). Interactions are assumed undirected and

modelled at the dyad level as:

Dijt = 1
{
γ0Dijt−1 + δ0Rijt−1 +Aij − ϵijt ≥ 0

}
t = 1, . . . , T

Rijt−1 = Dikt−1Djkt−1

(22)

where i, j, k denote the 3 different agents and Dijt ∈ {0, 1} encodes the presence or absence of a link between

agent i and agent j at time t. The network D0 ∈ {0, 1}3 forms the initial condition. The parameter γ0

captures state dependence while δ0 captures transitivity in relationships, i.e the effect of sharing friends in

common on the propensity to establish friendships. Finally, Aij is an unrestricted dyad level fixed effect

that could potentiall capture unobserved homophily and ϵijt is a standard logistic shock, iid over time and

individuals. While Graham (2013) establishes identification of (γ0, δ0) for T = 3 via a conditional likelihood

approach in the spirit of Chamberlain (1985), one limitation of the model is the absence of other covariates, in

particular time-specific effects. Controlling for such effects can be essential to adequately capture important

variation in social dynamics: think about the persistent impact of Covid-19 on all types of social interactions.

32



A relevant extension is thus:

Dijt = 1
{
γ0Dijt−1 + δ0Dikt−1Djkt−1 +X ′

ijtβ0 +Aij − ϵijt ≥ 0
}

t = 1, . . . , T

Rijt−1 = Dikt−1Djkt−1

(23)

Letting D = {0, 1}3 denote the support of the network Dt = (Dijt, Dikt, Djkt), it is straightforward to see that

the results developed for the VAR(1) case can be repurposed to suit model (23) . For T = 3, an adaptation

of Lemma 5 yields 8 possible transition functions given by:

ϕ
d|d
θ (D3, D2, D1, X) = 1{D2 = d} exp

∑
i<j

(Dij3 − dij2)[γ(Dij1 − dij2)−∆Rij1δ −∆X ′
ij2β]

 , d ∈ D

An adaptation of Lemma 6 implies that we can construct another 8 transition functions given by

ζ
d|d
θ (D3, D2, D1, D0, X) = 1{D1 = d}+

∑
d′∈D\{d}

ω
d|d
2,1,d′(θ)1{D1 = l}ϕd|dθ (D3, D2, D2, X), d ∈ D

where

µij,1(θ) = γDij0 + δRij0 +X ′
ij1β

κ
d|d
ij,2(θ) = γdij + δrij +X ′

ij3β

ω
d|d
2,1,d′(θ) = 1− e

∑
i<j(d

′
ij−dij)

[
κ
d|d
ij,2(θ)−µij,1(θ)

]

Therefore, for T = 3, 8 moment functions that all meaningfully depend on the model parameter are:

ψ
d|d
θ (D3, D2, D1, D0, X) = ϕ

d|d
θ (D3, D2, D1, X)− ζ

d|d
θ (D3, D2, D1, D0, X), d ∈ D

Their validity, in the sense of verifying equation (1), follows from the law of iterated expectations.
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M Proof of Lemma 7

Let us first consider the case C = 2. The proposed functional form for the transition function

ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi) implies that it is null when Yit ̸= 0. Hence

E
[
ϕ
0|0
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi

]
=

e
∑2

l=0 γ0l1(Yit−1=l)+X′
i0tβ0+Ai0

2∑
j=0

e
∑2

l=0 γjl1(Yit−1=l)+X′
ijtβj+Aij

×

 eγ00+X′
i0t+1β0+Ai0

2∑
j=0

eγj0+X′
ijt+1βj+Aij

ϕ
0|0
θ (0, 0, Yit−1, Xi)+

eγ10+X′
i1t+1β1+Ai1

2∑
j=0

eγj0+X′
ijt+1βj+Aij

ϕ
0|0
θ (1, 0, Yit−1, Xi)+

eγ20+X′
i2t+1β2+Ai2

2∑
j=0

eγj0+X′
ijt+1βj+Aij

ϕ
0|0
θ (2, 0, Yit−1, Xi)


Thus, to obtain the transition probability π

0|0
t (Ai, Xi) =

e
γ00+X′

i0t+1βj+Ai0

2∑
j=0

e
γj0+X′

ijt+1
βj+Aij

, we must set

ϕ
0|0
θ (0, 0, Yit−1, Xi) = 1

ϕ
0|0
θ (1, 0, Yit−1, Xi) = exp


 2∑

j=0

γ1j1(Yit−1 = j)− γ10 −∆X ′
i1t+1β1

−

 2∑
j=0

γ0j1(Yit−1 = j)− γ00 −∆X ′
i0t+1β0




ϕ
0|0
θ (2, 0, Yit−1, Xi) = exp


 2∑

j=0

γ2j1(Yit−1 = j)− γ20 −∆X ′
i2t+1β2

−

 2∑
j=0

γ0j1(Yit−1 = j)− γ00 −∆X ′
i0t+1β0




or more succinctly

ϕ
0|0
θ (Y t+1

it−1, Xi) = 1{Yit = 0}e
∑2

c=1 1{Yit+1=c}
[
(
∑2

j=0 γcj1(Yit−1=j)−γc0−∆X′
ict+1βc)−(

∑2
j=0 γ0j1(Yit−1=j)−γ00−∆X′

i0t+1β0)
]

= 1{Yit = 0}e
∑2

c=1 1{Yit+1=c}
[
(
∑2

j=0(γcj−γ0j)1(Yit−1=j)+γ00−γc0+∆X′
i0t+1β0−∆X′

ict+1βc)
]

By symmetry, it is clear that we also have:

ϕ
1|1
θ (Y t+1

it−1, Xi) = 1{Yit = 1}e
∑2

c=0
c ̸=1

1{Yit+1=c}
[
(
∑2

j=0(γcj−γ1j)1(Yit−1=j)+γ11−γc1+∆X′
i1t+1β1−∆X′

ict+1βc)
]

ϕ
2|2
θ (Y t+1

it−1, Xi) = 1{Yit = 2}e
∑2

c=0
c ̸=2

1{Yit+1=c}
[
(
∑2

j=0(γcj−γ2j)1(Yit−1=j)+γ22−γc2+∆X′
i2t+1β2−∆X′

ict+1βc)
]

In light of these expressions, one would naturally conjecture that for arbitrary C ≥ 2 the expressions become
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for all k ∈ Y:

ϕ
k|k
θ (Y t+1

it−1, Xi) = 1{Yit = k}e
∑

c∈Y\{k} 1{Yit+1=c}(
∑

j∈Y(γcj−γkj)1(Yit−1=j)+γkk−γck+∆X′
ikt+1βk−∆X′

ict+1βc)

We proceed to verify that this is correct by direct computation. We have:

E
[
ϕ
k|k
θ (Yit+1, Yit, Yit−1, Xi)|Yi0, Y t−1

i1 , Xi

]
= P (Yit = k|Y 0

i , Y
t−1
i1 , Xi, Ai)×∑

l∈Y

P (Yit+1 = l|Y 0
i , Y

t−1
i1 , Yit = k,Xi, Ai)ϕ

k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×

∑
l∈Y

eγlk+X′
ilt+1βl+Ail

C∑
j=0

eγjk+X′
ijt+1βj+Aij

ϕ
k|k
θ (l, k, Yit−1, Xi)

=
e
∑C

c=0 γkc1(Yit−1=c)+X′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×

 eγkk+X′
ikt+1βk+Aik

C∑
j=0

eγjk+X′
ijt+1βj+Aij

+
∑

l∈Y\{k}

eγlk+X′
ilt+1βl+Ail

C∑
j=0

eγjk+X′
ijt+1βj+Aij

e(
∑C

j=0(γlj−γkj)1(Yit−1=j)+γkk−γlk+∆X′
ikt+1βk−∆X′

ilt+1βl)


=

e
∑C

c=0 γkc1(Yit−1=c)+X′
iktβk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

× eγkk+X′
ikt+1βk+Aik

C∑
j=0

eγjk+X′
ijt+1βj+Aij

+
eγkk+X′

ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

×
∑

l∈Y\{k}

1
C∑

j=0

eγjk+X′
ijt+1βj+Aij

e
∑C

j=0 γlj1(Yit−1=j)+X′
iltβl+Ail

=
eγkk+X′

ikt+1βk+Aik

C∑
j=0

e
∑C

c=0 γjc1(Yit−1=c)+X′
ijtβj+Aij

1
C∑

j=0

eγjk+X′
ijt+1βj+Aij

∑
l∈Y

e
∑C

j=0 γlj1(Yit−1=j)+X′
iltβl+Ail

=
eγkk+X′

ikt+1βk+Aik

C∑
j=0

eγjk+X′
ijt+1βj+Aij

= π
k|k
t (Ai, Xi)

which concludes the proof.
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N Proof of Lemma 8

By construction for T ≥ 3, and t, s such that T − 1 ≥ t > s ≥ 1,

E
[
ζ
0|0
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = 0|Yi0, Y s−1

i1 , Xi, Ai) +
∑

l∈Y\{0}

ω
0|0
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
0|0
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]

=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+

C∑
l=1

ω
0|0
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai

]
π
0|0
t (Ai, Xi)

=
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

+

C∑
l=1

(
1− e(κ

0|0
l,t (θ)−µl,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

=
1

1 +
∑C

c=1 e
κ
0|0
c,t (θ)+Aic

= π
0|0
t (Ai, Xi)

The first line follows from the measurability of the weight ω
0|0
t,s,l(θ) with respect to the conditioning set

and the linearity of conditional expectations. The second line uses the definition of µc,s(θ) and follows from

the law of iterated expectations and Lemma 7. The third line makes use of the definition of κ
0|0
c,t (θ), ω

0|0
t,s,l(θ)

and the normalization γc0 = γ0c = 0, A0c = 0 for all c ∈ Y. The penultime line uses Appendix Lemma 9.

Likewise, for all k ∈ Y \ {0},

E
[
ζ
k|k
θ0

(Y t+1
it−1, Y

s
is−1, Xi)|Yi0, Y s−1

i1 , Xi, Ai

]
= P (Yis = k|Yi0, Y s−1

i1 , Xi, Ai) +
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}E

[
ϕ
k|k
θ (Y t+1

it−1, Xi)|Yi0, Y t−1
i1 , Xi, Ai

]
|Yi0, Y s−1

i1 , Xi, Ai

]

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

ω
k|k
t,s,l(θ)E

[
1{Yis = l}|Yi0, Y s−1

i1 , Xi, Ai

]
π
k|k
t (Ai, Xi)

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+
∑

l∈Y\{k}

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eµk,s(θ)+Aik

1 +
∑C

c=1 e
µc,s(θ)+Aic

+

(
1− e−κ

k|k
k,t (θ)+µk,s(θ)

)
1

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

+

C∑
l=1
l ̸=k

(
1− e(κ

k|k
l,t (θ)−µl,s(θ))−(κ

k|k
k,t (θ)−µk,s(θ))

)
eµl,s(θ)+Ail

1 +
∑C

c=1 e
µc,s(θ)+Aic

eκ
k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

=
eκ

k|k
k,t (θ)+Aik

1 +
∑C

c=1 e
κ
k|k
c,t (θ)+Aic

= π
k|k
t (Ai, Xi)

The first line follows from the measurability of the weight ω
k|k
t,s,l(θ) with respect to the conditioning set and

the linearity of conditional expectations. The second line uses the definition of µk,s(θ) and follows from the
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law of iterated expectations and Lemma 7. The third line makes use of the definition of κ
k|k
c,t (θ) and ω

k|k
t,s,l(θ).

The fourth line uses the fact that κ
k|k
0,t (θ) = µ0,s(θ) = 0 due to the normalization γc0 = γ0c = 0, A0c = 0 for

all c ∈ Y. The penultime line uses Appendix Lemma 9.

O Additional details for the Monte Carlo simulations

O.1 Expressions of the moment functions for the AR(3) with T=5

Using Theorem 1, Lemma 4 and Proposition 3, careful derivations give the following:

ψ
0|0,1,1
θ (Y 5

i−1, Y
1
i−2, Xi) = −eγ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β(1− Yi1)Yi2(1− Yi3)

+

(
(1− eγ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β)
(
1− e−γ1+γ2+γ3(1−Yi0)+X′

i53β
)
eγ1−γ3−∆X′

i5β − 1

)
(1− Yi1)Yi2Yi3(1− Yi4)Yi5

+

(
(1− eγ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β)
(
1− e−γ1+γ2+γ3(1−Yi0)+X′

i53β
)
− 1

)
(1− Yi1)Yi2Yi3(1− Yi4)(1− Yi5)

+ e−γ1Yi0+γ2(1−Yi−1)+γ3(1−Yi−2)+X′
i51βYi1(1− Yi2)+

+ e−γ1Yi0+γ2(1−Yi−1)+γ3(1−Yi−2)+X′
i51β(1− e−γ1+γ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β)Yi1Yi2(1− Yi3)

+ e−γ1Yi0+γ2(1−Yi−1)+γ3(1−Yi−2)+X′
i51β(1− e−γ1+γ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β)
(
1− e−γ1+γ3(1−Yi0)+X′

i53β
)
eγ1−∆X′

i5β×

Yi1Yi2Yi3(1− Yi4)Yi5

+ e−γ1Yi0+γ2(1−Yi−1)+γ3(1−Yi−2)+X′
i51β(1− e−γ1+γ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β)
(
1− e−γ1+γ3(1−Yi0)+X′

i53β
)
×

Yi1Yi2Yi3(1− Yi4)(1− Yi5)

− (1− Yi1)Yi2Yi3Yi4

ψ
0|0,1,0
θ (Y 5

i−1, Y
1
i−2, Xi) = −

(
1− eγ2(Yi0−1)+γ3Yi−1+X′

i,25β
)
(1− Yi1)(1− Yi2)Yi3Yi4

−
(
1− eγ2(Yi0−1)+γ3Yi−1+X′

i,25β
)(

1−
(
1− eγ2−γ3Yi0+X′

i53β
)
eγ1−γ2−∆X′

i5β

)
(1− Yi1)(1− Yi2)Yi3(1− Yi4)Yi5

−
(
1− eγ2(Yi0−1)+γ3Yi−1+X′

i,25β
)
eγ2−γ3Yi0+X′

i53β(1− Yi1)(1− Yi2)Yi3(1− Yi4)(1− Yi5)

+ e−γ1Yi0+γ2(1−Yi−1)−γ3Yi−2+X′
i,51βYi1(1− Yi2)(1− Yi3)

+ eγ1(1−Yi0)+γ2(Yi0−Yi−1)+γ3(Yi−1−Yi−2)+X′
i,21βYi1(1− Yi2)Yi3Yi4

+ e−γ1Yi0+γ2(1−Yi−1)−γ3Yi−2+X′
i,51β

[
1−

(
1− eγ1+γ2(Yi0−1)+γ3Yi−1+X′

i,25β
)(

1−
(
1− e−γ3Yi0+X′

i53β
)
eγ1−γ2+γ3−∆X′

i5β

)]
×

Yi1(1− Yi2)Yi3(1− Yi4)Yi5

+ e−γ1Yi0+γ2(1−Yi−1)−γ3Yi−2+X′
i,51β

[
1−

(
1− eγ1+γ2(Yi0−1)+γ3Yi−1+X′

i,25β
)
e−γ3Yi0+X′

i53β

]
Yi1(1− Yi2)Yi3(1− Yi4)(1− Yi5)

− (1− Yi1)Yi2
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ψ
0|0,0,1
θ (Y 5

i−1, Y
1
i−2, Xi) =

− (1− Yi1)Yi2Yi3

− e−γ2Yi0+γ3(1−Yi−1)+X′
i52β(1− Yi1)Yi2(1− Yi3)(1− Yi4)(1− Yi5)

+

((
1− e−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)
eγ1+γ3(Yi0−1)+X′

i35β − 1

)
(1− Yi1)Yi2(1− Yi3)Yi4

+

((
1− e−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)(

1−
(
1− eγ1+γ3(Yi0−1)+X′

i35β
)(

1− eγ2−γ3−∆X′
i5β
))

− 1

)
×

(1− Yi1)Yi2(1− Yi3)(1− Yi4)Yi5

+ e−γ1Yi0−γ2Yi−1+γ3(1−Yi−2)+X′
i51βYi1(1− Yi2)

+ e−γ1Yi0−γ2Yi−1+γ3(1−Yi−2)+X′
i51β

(
1− e−γ1−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)
Yi1Yi2(1− Yi3)(1− Yi4)(1− Yi5)

+ e−γ1Yi0−γ2Yi−1+γ3(1−Yi−2)+X′
i51β

(
1− e−γ1−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)
eγ1+γ2+γ3(Yi0−1)+X′

i35βYi1Yi2(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1+γ3(1−Yi−2)+X′
i51β×(

1− e−γ1−γ2Yi0+γ3(1−Yi−1)+X′
i52β
)(

1−
(
1− eγ1+γ2+γ3(Yi0−1)+X′

i35β
)(

1− eγ2−∆X′
i5β
))

Yi1Yi2(1− Yi3)(1− Yi4)Yi5

ψ
0|0,0,0
θ (Y 5

i−1, Y
1
i−2, Xi) =

+
(
eγ2Yi,0+γ3Yi−1+X′

25β − 1
)
(1− Yi1)(1− Yi2)Yi3

−
(
1− eγ2Yi,0+γ3Yi−1+X′

25β
)(

1− eγ3Yi0+X′
i35β
)
(1− Yi1)(1− Yi2)(1− Yi3)Yi4

−
(
1− eγ2Yi,0+γ3Yi−1+X′

25β
)(

1− eγ3Yi0+X′
i35β
)(

1− e−∆X′
i5β
)
(1− Yi1)(1− Yi2)(1− Yi3)(1− Yi4)Yi5

+ e−γ1Yi0−γ2Yi−1−γ3Yi−2+X′
i51βYi1(1− Yi2)(1− Yi3)(1− Yi4)(1− Yi5)

+ eγ1(1−Yi0)+γ2(Yi0−Yi−1)+γ3(Yi−1−Yi−2)+X′
i21βYi1(1− Yi2)Yi3

+ e−γ1Yi0−γ2Yi−1−γ3Yi−2+X′
i51β

(
1−

(
1− eγ1+γ2Yi,0+γ3Yi−1+X′

25β
)(

1− eγ2+γ3Yi0+X′
i35β
))

Yi1(1− Yi2)(1− Yi3)Yi4

+ e−γ1Yi0−γ2Yi−1−γ3Yi−2+X′
i51β)×(

1−
(
1− eγ1+γ2Yi,0+γ3Yi−1+X′

25β
)(

1− eγ2+γ3Yi0+X′
i35β
)(

1− eγ3−∆X′
i5β
))

Yi1(1− Yi2)(1− Yi3)(1− Yi4)Yi5

− (1− Yi1)Yi2
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ψ
1|1,0,0
θ (Y 5

i−1, Y
1
i−2, Xi)

= −eγ2Yi0+γ3Yi−1+X′
i25βYi1(1− Yi2)Yi3

+

((
1− eγ2Yi0+γ3Yi−1+X′

i25β
)(

1− e−γ1+γ2+γ3Yi0+X′
i,35β

)
− 1

)
Yi1(1− Yi2)(1− Yi3)Yi4Yi5

+

((
1− eγ2Yi0+γ3Yi−1+X′

i25β
)(

1− e−γ1+γ2+γ3Yi0+X′
i,35β

)
eγ1−γ3+∆X′

i5β − 1

)
Yi1(1− Yi2)(1− Yi3)Yi4(1− Yi5)

+ eγ1(Yi0−1)+γ2Yi−1+γ3Yi−2+X′
i15β(1− Yi1)Yi2

+ eγ1(Yi0−1)+γ2Yi−1+γ3Yi−2+X′
i15β

(
1− e−γ1+γ2Yi0+γ3Yi−1+X′

i25β
)
(1− Yi1)(1− Yi2)Yi3

+ eγ1(Yi0−1)+γ2Yi−1+γ3Yi−2+X′
i15β

(
1− e−γ1+γ2Yi0+γ3Yi−1+X′

i25β
)(

1− e−γ1+γ3Yi0+X′
i,35β

)
(1− Yi1)(1− Yi2)(1− Yi3)Yi4Yi5

+ eγ1(Yi0−1)+γ2Yi−1+γ3Yi−2+X′
i15β×(

1− e−γ1+γ2Yi0+γ3Yi−1+X′
i25β
)(

1− e−γ1+γ3Yi0+X′
i,35β

)
eγ1+∆X′

i5β(1− Yi1)(1− Yi2)(1− Yi3)Yi4(1− Yi5)

− Yi1(1− Yi2)(1− Yi3)(1− Yi4)

ψ
1|1,0,1
θ (Y 5

i−1, Y
1
i−2, Xi) =

+
(
e−γ2Yi0+γ3(1−Yi−1)+X′

i52β − 1
)
Yi1Yi2(1− Yi3)(1− Yi,4)

−
(
1− e−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)
eγ2+γ3(Yi0−1)+X′

i,35βYi1Yi2(1− Yi3)Yi4Yi5

−
(
1− e−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)(

1−
(
1− eγ2+γ3(Yi0−1)+X′

i,35β
)
eγ1−γ2+∆X′

i5β

)
Yi1Yi2(1− Yi3)Yi4(1− Yi5)

+ eγ1(Yi0−1)+γ2Yi−1+γ3(Yi−2−1)+X′
i15β(1− Yi1)Yi2Yi3

+ eγ1Yi0+γ2(Yi−1−Yi0)+γ3(Yi−2−Yi−1)+X′
i12β(1− Yi1)Yi2(1− Yi3)(1− Yi,4)

+ eγ1(Yi0−1)+γ2Yi−1+γ3(Yi−2−1)+X′
i15β

(
1−

(
1− eγ1−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)
eγ3(Yi0−1)+X′

i,35β

)
(1− Yi1)Yi2(1− Yi3)Yi4Yi5

+ eγ1(Yi0−1)+γ2Yi−1+γ3(Yi−2−1)+X′
i15β×(

1−
(
1− eγ1−γ2Yi0+γ3(1−Yi−1)+X′

i52β
)(

1−
(
1− eγ3(Yi0−1)+X′

i,35β
)
eγ1−γ2+γ3+∆X′

i5β

))
(1− Yi1)Yi2(1− Yi3)Yi4(1− Yi5)

− Yi1(1− Yi2)
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ψ
1|1,1,0
θ (Y 5

i−1, Y
1
i−2, Xi) =

− eγ2(Yi0−1)+γ3Yi−1+X′
i25βYi1(1− Yi2)Yi3Yi4Yi5

+

((
1− eγ2(Yi0−1)+γ3Yi−1+X′

i25β
)
eγ1−γ3Yi0+X′

53β − 1

)
Yi1(1− Yi2)Yi3(1− Yi4)

+

((
1− eγ2(Yi0−1)+γ3Yi−1+X′

i25β
)(

1−
(
1− eγ1−γ3Yi0+X′

53β
)(

1− eγ2−γ3+∆X′
i5β
))

− 1

)
Yi1(1− Yi2)Yi3Yi4(1− Yi5)

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3Yi−2+X′
i15β(1− Yi1)Yi2

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3Yi−2+X′
i15β

(
1− e−γ1+γ2(Yi0−1)+γ3Yi−1+X′

i25β
)
(1− Yi1)(1− Yi2)Yi3Yi4Yi5

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3Yi−2+X′
i15β

(
1− e−γ1+γ2(Yi0−1)+γ3Yi−1+X′

i25β
)
eγ1+γ2−γ3Yi0+X′

53β(1− Yi1)(1− Yi2)Yi3(1− Yi4)

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3Yi−2+X′
i15β×(

1− e−γ1+γ2(Yi0−1)+γ3Yi−1+X′
i25β
)(

1−
(
1− eγ1+γ2−γ3Yi0+X′

53β
)(

1− eγ2+∆X′
i5β
))

(1− Yi1)(1− Yi2)Yi3Yi4(1− Yi5)

− Yi1(1− Yi2)(1− Yi3)

ψ
1|1,1,1
θ (Y 5

i−1, Y
1
i−2, Xi) =

+
(
eγ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β − 1
)
Yi1Yi2(1− Yi3)

−
(
1− eγ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β
)(

1− eγ3(1−Yi0)+X′
53β
)
Yi1Yi2Yi3(1− Yi4)

−
(
1− eγ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β
)(

1− eγ3(1−Yi0)+X′
53β
)(

1− e∆X′
i5β
)
Yi1Yi2Yi3Yi4(1− Yi5)

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3(Yi−2−1)+X′
i15β(1− Yi,1)Yi2Yi3Yi4Yi5

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3(Yi−2−1)+X′
i15βeγ1+γ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β(1− Yi,1)Yi2(1− Yi3)

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3(Yi−2−1)+X′
i15β×(

1−
(
1− eγ1+γ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β
)(

1− eγ2+γ3(1−Yi0)+X′
53β
))

(1− Yi,1)Yi2Yi3(1− Yi4)

+ eγ1(Yi0−1)+γ2(Yi−1−1)+γ3(Yi−2−1)+X′
i15β×(

1−
(
1− eγ1+γ2(1−Yi0)+γ3(1−Yi−1)+X′

i52β
)(

1− eγ2+γ3(1−Yi0)+X′
53β
)(

1− eγ3+∆X′
i5β
))

(1− Yi,1)Yi2Yi3Yi4(1− Yi5)

− Yi1(1− Yi2)

O.2 Figures for the AR(3)
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Figure 2: Densities of GMM estimators for the AR(3) with one regressor

N = 500 N = 2000 N = 8000 N = 16000
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Notes: The densities of estimates based on the first GMM estimator (i.e θ̂a), the second GMM estimator (i.e θ̂b) and the third

GMM estimator (i.e θ̂c) are indicated in green, blue and red respectively. Reported results are based on a 1000 replications of

the DGP presented above with γ01 = 1.0, γ02 = 0.5, γ03 = 0.25, β0 = 0.5. True parameter values are indicated with a vertical

dashed line.
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O.3 Expressions of the moment functions for the MAR(1) with C = 3 and T = 3

Here, we exceptionally use the notation Xik,ts = Xikt −Xiks to keep manageable expressions. Appealing to

Lemmas 7-8 and adapting Proposition 2 to the MAR(1) setting, careful calculations lead to:

ψ
0|0
θ (Y 3

i1, Y
1
i0, Xi) =

(
eX

′
i0;32β0−X′

i1;32β1 − 1
)
1(Yi1 = 0)1{Yi2 = 0}1{Yi3 = 1}

+
(
eX

′
i0;32β0−X′

i2;32β2 − 1
)
1(Yi1 = 0)1{Yi2 = 0}1{Yi3 = 2}

+ e−γ111{Yi0=1}−γ121{Yi0=2}+X′
i1;31β1−X′

i0;31β01{Yi1 = 1}1{Yi2 = 0}1{Yi3 = 0}

+ eγ11−γ111{Yi0=1}−γ121{Yi0=2}+X′
i1;21β1−X′

i0;21β01(Yi1 = 1)1{Yi2 = 0}1{Yi3 = 1}

+ eγ21−γ111{Yi0=1}−γ121{Yi0=2}+X′
i1;31β1−X′

i2;32β2−X′
i0;21β01(Yi1 = 1)1{Yi2 = 0}1{Yi3 = 2}

+ e−γ211{Yi0=1}−γ221{Yi0=2}+X′
i2;31β2−X′

i0;31β01{Yi1 = 2}1{Yi2 = 0}1{Yi3 = 0}

+ eγ12−γ211{Yi0=1}−γ221{Yi0=2}−X′
i1;32β1+X′

i2;31β2−X′
i0;21β01(Yi1 = 2)1{Yi2 = 0}1{Yi3 = 1}

+ e−γ211{Yi0=1}+γ22−γ221{Yi0=2}+X′
i2;21β2−X′

i0;21β01(Yi1 = 2)1{Yi2 = 0}1{Yi3 = 2}

− 1{Yi1 = 0}1{Yi2 = 1}

− 1{Yi1 = 0}1{Yi2 = 2}

ψ
1|1
θ (Y 3

i1, Y
1
i0, Xi) = +

(
eX

′
i1;32β1−X′

i0;32β0 − 1
)
1(Yi1 = 1)1{Yi2 = 1}1{Yi3 = 0}

+
(
eX

′
i1;32β1−X′

i2;32β2 − 1
)
1(Yi1 = 1)1{Yi2 = 1}1{Yi3 = 2}

+ e−γ11+γ111(Yi0=1)+γ121(Yi0=2)−X′
i1;31β1+X′

i0;31β01{Yi1 = 0}1{Yi2 = 1}1{Yi3 = 1}

+ eγ111(Yi0=1)+γ121(Yi0=2)−X′
i1;21β1+X′

i0;21β01(Yi1 = 0)1{Yi2 = 1}1{Yi3 = 0}

+ e−γ21+γ111(Yi0=1)+γ121(Yi0=2)−X′
i1;21β1−X′

i2;32β2+X′
i0;31β01(Yi1 = 0)1{Yi2 = 1}1{Yi3 = 2}

+ eγ21−γ11+(γ11−γ21)1(Yi0=1)+(γ12−γ22)1(Yi0=2)−X′
i1;31β1+X′

i2;31β21(Yi1 = 2)1{Yi2 = 1}1{Yi3 = 1}

+ eγ21−γ12+(γ11−γ21)1(Yi0=1)+(γ12−γ22)1(Yi0=2)−X′
i1;21β1+X′

i2;31β2−X′
i0;32β01(Yi1 = 2)1{Yi2 = 1}1{Yi3 = 0}

+ eγ22−γ12+(γ11−γ21)1(Yi0=1)+(γ12−γ22)1(Yi0=2)−X′
i1;21β1+X′

i2;21β21(Yi1 = 2)1{Yi2 = 1}1{Yi3 = 2}

− 1{Yi1 = 1}1{Yi2 = 0}

− 1{Yi1 = 1}1{Yi2 = 2}
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ψ
2|2
θ (Y 3

i1, Y
1
i0, Xi) =

(
eX

′
i2;32β2−X′

i0;32β0 − 1
)
1(Yi1 = 2)1{Yi2 = 2}1{Yi3 = 0}

+
(
eX

′
i2;32β2−X′

i1;32β1 − 1
)
1(Yi1 = 2)1{Yi2 = 2}1{Yi3 = 1}

+ e−γ22+γ211(Yi0=1)+γ221(Yi0=2)−X′
i2;31β2+X′

i0;31β01{Yi1 = 0}1{Yi2 = 2}1{Yi3 = 2}

+ eγ211(Yi0=1)+γ221(Yi0=2)−X′
i2;21β2+X′

i0;21β01(Yi1 = 0)1{Yi2 = 2}1{Yi3 = 0}

+ e−γ12+γ211(Yi0=1)+γ221(Yi0=2)−X′
i2;21β2−X′

i1;32β1+X′
i0;31β01(Yi1 = 0)1{Yi2 = 2}1{Yi3 = 1}

+ eγ12−γ22+(γ21−γ11)1(Yi0=1)+(γ22−γ12)1(Yi0=2)+X′
i1;31β1−X′

i2;31β21{Yi1 = 1}1{Yi2 = 2}1{Yi3 = 2}

+ eγ12−γ21+(γ21−γ11)1(Yi0=1)+(γ22−γ12)1(Yi0=2)+X′
i1;31β1−X′

i2;21β2−X′
i0;32β01(Yi1 = 1)1{Yi2 = 2}1{Yi3 = 0}

+ eγ11−γ21+(γ21−γ11)1(Yi0=1)+(γ22−γ12)1(Yi0=2)+X′
i1;21β1−X′

i2;21β21(Yi1 = 1)1{Yi2 = 2}1{Yi3 = 1}

− 1{Yi1 = 2}1{Yi2 = 0}

− 1{Yi1 = 2}1{Yi2 = 1}
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