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Abstract

This paper systematically analyzes and reviews identification strategies for bi-

nary choice logit models with fixed effects in panel and network data settings.

We examine both static and dynamic models with general fixed-effect structures,

including individual effects, time trends, and two-way or dyadic effects. A key

challenge is the incidental parameter problem, which arises from the increasing

number of fixed effects as the sample size grows. We explore two main strate-

gies for eliminating nuisance parameters: conditional likelihood methods, which

remove fixed effects by conditioning on sufficient statistics, and moment-based

methods, which derive fixed-effect-free moment conditions. We demonstrate how

these approaches apply to a variety of models, summarizing key findings from the

literature while also presenting new examples and new results.
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1 Introduction

Binary outcome models with fixed effects have a long history in economics and related

fields. They allow for flexible modeling of individual decisions while accounting for un-

observed heterogeneity. These models arise naturally in two types of data structures:

traditional panel data, where individuals or firms are observed over time, and network

or dyadic data, where observations correspond to interactions between pairs of units.

In both cases, researchers often wish to estimate the effect of observed covariates on

a binary outcome, while allowing for unit-specific or pair-specific unobserved compo-

nents. Examples include individual labor market choices, firm entry decisions, and the

formation of social or economic networks.

A central challenge in these models is the treatment of fixed effects, which capture

unobserved heterogeneity. When treated as parameters to be estimated, fixed effects

can lead to the incidental parameter problem, first identified by Neyman and Scott

(1948). This issue arises because the number of fixed effects grows with the sample

size. If the number of observations per parameter increases slowly, as in certain network

models or panel data settings with increasing number of time periods, estimators may

be asymptotically biased. In such cases, bias correction methods can be applied; see, for

example, Hahn and Newey (2004), and the surveys by Arellano and Hahn (2007) and

Fernández-Val and Weidner (2018). On the other hand, when the number of parameters

grows proportionally with the number of observations, as in standard panel data models

with a fixed number of time periods, estimators are often inconsistent. In these settings,

the most effective strategy is to eliminate the fixed effects.1

In this paper, we summarize and extend two existing methods for estimating binary

choice logit models with fixed effects by eliminating them from the estimation problem.

Our focus is on both static and dynamic models, allowing for very general fixed effect

structures. We discuss models for standard panel data, as well as dyadic models that

1In an alternative approach, Higgins and Jochmans (2024) show that in parametric settings like the
one considered in this paper, it is possible to use the bootstrap to do valid inference on the common
parameters using the inconsistent and biased estimator that treats the fixed effects as parameters to
be estimated.
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arise in the study of networks.

Two main general approaches have been developed to address the incidental param-

eter problem. The first is based on conditional likelihood and requires a parametric

model conditional on the unobservable fixed effects. This method eliminates the fixed

effects by conditioning on sufficient statistics. It was first introduced by Rasch (1960)

in the context of educational testing and later adapted to econometric applications by

Chamberlain (1980). In binary logit models, the fixed effects drop out of the likelihood

when we condition on certain linear combinations of the outcomes. This approach

has been extended to more complex fixed effect structures, including two-way fixed

effects in dyadic data (Charbonneau, 2017) and network formation models (Graham,

2017). Conditional likelihood methods are attractive because they provide a way to

estimate structural parameters without modeling the distribution of the unobserved

effects. However, they are only available in models where sufficient statistics can be

found in closed form.

The second approach relies on moment conditions that do not depend on the fixed

effects.2 This idea is sometimes called functional differencing. It was formalized by Bon-

homme (2012) and applied to discrete choice models by Kitazawa (2022) and Honoré

and Weidner (2024). The basic idea is to construct functions of the data whose condi-

tional expectation is zero for all values of the fixed effects. These functions then define

valid moment conditions for the structural parameters. This approach has also been

used to develop estimators in dynamic logit models with general fixed effects by Dano

(2023). Moment-based methods can be used in a wider range of models than condi-

tional likelihood. They are especially useful in dynamic models or in models with more

complicated fixed effect structures.

This paper reviews both approaches in the context of binary choice logit models. We

present the underlying identification ideas in a unified framework and show how they

apply to standard examples. These include static panel models with individual fixed

2In this paper we focus on moment equality conditions. Moment inequalities form the basis for
the semiparametric approach in Manski (1987), and have also been used to construct and estimate
identified sets for the structural parameters. See, for example, Pakes, Porter, Shepard and Calder-
Wang (2022).
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effects, models with heterogeneous time trends, two-way fixed effects, and network

formation settings. For dynamic models, we discuss how moment conditions can be

constructed under general assumptions, and how these conditions relate to the number

of fixed effects in the model. We also give examples from dynamic panel and dynamic

network settings. We focus on the logit model, rather than, say, the probit model

or a semiparametric version, because it is known from Chamberlain (2010) that in

the simplest case of a static binary response panel data model with two time periods,

regular root-n consistent estimation of the common parameters is only possible in the

logit model.3

The literature has long employed both conditional likelihood and moment condition

approaches to estimate common parameters in fixed effects variants of other standard

nonlinear models. For instance, Hausman, Hall and Griliches (1984) applied condi-

tional likelihood methods to panel data versions of Poisson regression models. Simi-

larly, Honoré (1992, 1993) and Hu (2002) developed estimators for static and dynamic

censored and truncated regression models using moment functions. Additionally, Cham-

berlain (1992) and Wooldridge (1997) utilized moment conditions in a class of static and

dynamic multiplicative models. A hybrid approach is taken by Kyriazidou (1997, 2001),

who combined conditional likelihood and moment conditions to construct estimators

for static and dynamic sample selection models.

The fixed effects approach discussed earlier, and further developed in this paper,

places no assumptions on the relationship between the individual-specific effects and the

explanatory variables. A common alternative is to adopt a random effects framework,

which assumes a specific distribution for the individual effects and estimates the model

parameters via maximum likelihood. However, this approach faces two key challenges.

First, in many economic applications, explanatory variables are at least partially

chosen by individuals. In such cases, it is often implausible to assume independence

between these variables and the individual effects (see Mundlak 1961). Second, dynamic

3For a discussion of what can be learned about the common parameters in dynamic binary response
models with panel data in a more semiparametric setting, see for example Khan, Ponomareva and
Tamer (2023).
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models introduce the initial conditions problem: the distribution of the initial dependent

variable typically depends on both the individual effects and the explanatory variables

in a complex way (see Heckman 1981).

A solution to these issues, originally proposed by Mundlak (1978), is the corre-

lated random effects model. This approach specifies a model for the individual effects

conditional on the explanatory variables and, in dynamic settings, also on the initial

conditions. For further discussion, see Wooldridge (2005).4

The remainder of the paper is organized as follows. Section 2 reviews and extends

the conditional likelihood approach for estimating common parameters in static logit

models. The key insight from this section is that under relatively simple conditions,

one can identify a sufficient statistic for the fixed effects, which then serves as the

basis for conditional likelihood estimation of the common parameters—specifically, the

coefficients on strictly exogenous explanatory variables. Section 3 turns to dynamic

models in which the only explanatory variables are lagged outcomes. In this setting,

there are again straightforward conditions under which a sufficient statistic for the

fixed effects can be found. However, unlike the static case, the resulting conditional

likelihood may fail to identify all the common parameters of the model. This limitation

motivates Section 4, which explores more general dynamic specifications. Within the

logit framework, we demonstrate that it is often possible to construct moment conditions

that allow for estimation of the parameters even when no non-trivial sufficient statistic

exists, or when conditioning on a sufficient statistic yields a likelihood function that is

uninformative about a subset of the parameters of interest. Section 5 concludes.

4For a recent overview of the historical distinction between fixed and random effects in panel data,
see Bellemare and Millimet (2025).
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2 Static logit models

2.1 Model setup

We observe data (Yt, Xt, wt) for t = 1, . . . , T , where Yt ∈ {0, 1} is a random binary

outcome, Xt ∈ Rdx is a random vector of covariates whose associated coefficient β ∈ Rdx

is the parameter of interest, and wt ∈ Rdw are non-random vectors associated with an

unobserved effect A ∈ Rdw .5 We denote the outcome vector as Y = (Y1, . . . , YT )
′ ∈ Y =

{0, 1}T , and we write X = (X1, . . . , XT ) ∈ X ⊂ Rdx×T and W = (w1, . . . , wT ) ∈ Rdw×T .

We use capital letters to denote random variables (such as Yt, Xt, and A) and upright

font to denote non-random matrices (such as W). The parameter β is treated as non-

random, while the fixed effect A is allowed to be random.

Assumption 1 The data-generating process is

Pr
(
Y = y

∣∣X,A
)
=

T∏
t=1

[
1

1 + exp(X ′
t β + w′

t A)

]1−yt [ exp(X ′
t β + w′

t A)

1 + exp(X ′
t β + w′

t A)

]yt
.

This is a standard assumption for binary logit models with fixed effects. We could

write all probability statements explicitly conditional on W (e.g. Pr(Y = y | W, X,A)

in Assumption 1), but since W is treated as non-random throughout, we omit this for

notational simplicity.

Since we consider A ∈ Rdw , Assumption 1 implies that

0 < Pr
(
Y = y

∣∣X = x
)
< 1, for all y ∈ Y and x ∈ X . (1)

However, all results in this section extend to cases where (components of) A may take

values in ±∞, provided that the boundedness condition in (1) continues to hold.

Example 2.1 (Standard fixed effects in panel data:) Consider dw = 1 and wt =

5Most results extend to random wt, but since all our examples involve non-random wt, we focus on
that case.
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1 for all t ∈ {1, . . . , T}. Then

X ′
t β + w′

t A = X ′
t β + A

corresponds to the standard panel logit model with an individual-specific intercept. We

observe an i.i.d. sample of (Y,X), denoted by {(Yi, Xi) : i = 1, . . . , n}, where the

data for each unit i satisfy Assumption 1. The index in the logit specification becomes

X ′
it β + Ai. W = (1, . . . , 1) and β are non-random and constant across units i.

Example 2.2 (Dyadic fixed effects in network data:) Consider dw = n and T =

n(n− 1)/2, where each observation t = (i, j) = (j, i) corresponds to an unordered pair

of distinct units i, j ∈ {1, . . . , n}, with i ̸= j. For each dyad (i, j), we observe a binary

outcome Yij ∈ {0, 1} indicating whether a link is present between units i and j. Let

Xij ∈ Rdx denote dyad-level covariates capturing observed characteristics of the pair,

such as homophily measures. Define wij ∈ Rn as a selection vector such that6

X ′
ij β + w′

ij A = X ′
ij β + Ai + Aj

corresponds to a network formation model with unit-specific fixed effects. This specifi-

cation captures both homophily (through Xij) and degree heterogeneity (through Ai and

Aj), as in Graham (2017). The model can be interpreted as describing a small sub-

network within a larger graph, and by considering many such subnetworks, we obtain

multiple independent or weakly dependent observations of (Y,X). For example, Graham

(2017) considers subnetworks of size n = 4 to construct his “tetrad logit” estimator.

Again, W and β are non-random and constant across subnetworks.

These are two classic examples of models satisfying the structure in Assumption 1.

Various generalizations are discussed later.

6For each unordered pair t = (i, j) with i ̸= j, define the vector wij ∈ Rn by

(wij)k =

{
1, if k = i or k = j,

0, otherwise.
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2.2 Identification via conditional likelihood

Our goal is to identify the parameter β without imposing any assumptions on the

distribution of the unobserved effect A. In the static binary logit model of Assumption 1,

it is well known that WY is a sufficient statistic for A, implying that conditioning

on this statistic removes dependence on A. Formally, for any two outcome vectors

y1, y2 ∈ Y = {0, 1}T such that Wy1 = Wy2, one can show that

Pr
(
Y = y1

∣∣X,A
)

Pr
(
Y = y2

∣∣X,A
) = exp [β′X(y1 − y2)] , (2)

which implies that the distribution Y conditional on Y ∈ {y1, y2}, X, and A does not

depend on A, as long as Wy1 = Wy2:

Pr
(
Y = y1

∣∣X,A, Y ∈ {y1, y2}
)
=

exp [β′X(y1 − y2)]

1 + exp [β′X(y1 − y2)]
. (3)

To construct such identifying pairs y1, y2, it is useful to reformulate the conditionWy1 =

Wy2 as requiring the existence of a difference vector w⊥ = y1 − y2 satisfying Ww⊥ = 0.

The following lemma formalizes this observation.

Lemma 1 There exist y1, y2 ∈ {0, 1}T with y1 ̸= y2 and Wy1 = Wy2 if and only if there

exists w⊥ ∈ {−1, 0, 1}T with w⊥ ̸= 0 and Ww⊥ = 0.

The condition Ww⊥ = 0 is familiar from linear models: if the T -vector Y satisfies

Y = X ′β+W′A+ ε and Ww⊥ = 0, then pre-multiplying by w′
⊥ eliminates the nuisance

term WA. Remarkably, the same condition allows us to eliminate A in the binary logit

model as well — provided that w⊥ satisfies w⊥ ∈ {−1, 0, 1}T , which implies that it

corresponds to a difference of two binary vectors. Ultimately, this leads to the following

identification result.

Theorem 1 Suppose Assumption 1 holds. Assume further that for some integer d⊥ ≥

1, there exists a non-random matrix W⊥ ∈ {−1, 0, 1}T×d⊥ such that WW⊥ = 0, and
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there is no vector b ∈ Rdx for which b′XW⊥ = 0 almost surely. Then, the parameter β

is uniquely identified from the distribution of (Y,X).

Crucially, this identification result imposes no restrictions on the distribution of A

or its dependence with X. The condition WW⊥ = 0 ensures that the columns of W⊥

are orthogonal to the fixed effects. The rank condition guarantees that these orthogonal

directions yield sufficient variation in X to identify all components of β.

Note that the number of columns in W⊥, denoted d⊥, can be smaller than dx. What

matters is that the matrix XW⊥ has enough variation to identify β. In particular, the

vector β can be identified with d⊥ = 1.

Remark 2.1 The identification condition in Theorem 1 closely parallels that of a stan-

dard linear fixed effects model. Suppose we observe Y = X ′β+W′A+ ε. In this setting,

the parameter β is identified if there exists a matrix W⊥ ∈ RT×d⊥ such that WW⊥ = 0

and XW⊥ is non-collinear. Pre-multiplying the linear model equation by W′
⊥ yields

W′
⊥Y = W′

⊥X
′β+W′

⊥ε, in which A no longer appears. The resulting equation can then

be estimated by ordinary least squares (OLS).

In the binary choice case, we are subject to the additional restriction that W⊥ must

have integer entries in {−1, 0, 1}, since it must represent differences between binary

outcome vectors. Nonetheless, the identification conditions for the logit model in The-

orem 1 are directly analogous to that of the linear model, modulo this constraint.

Remark 2.2 An alternative way to understand our identification result is via the popu-

lation conditional maximum likelihood estimator (CMLE), as in Davezies, D’Haultfœuille

and Laage (2024). Given any s ∈ Rdw , define S(s) = {y ∈ {0, 1}T : Wy = s} and con-

sider the conditional log-likelihood

ℓc(β | y, x, s) := log [Pr(Y = y | X = x,WY = s)] ,

which is well-defined and free of A due to sufficiency of WY . If the expected Hessian

HCMLE := E
[
−∂2ℓc(β | Y,X,WY )

∂β ∂β′

]
8



is positive definite, then β is the unique maximizer of the population CMLE objective.

To connect this to Theorem 1, observe that

HCMLE = E

 ∑
y1,y2∈S(WY )

ω(WY,X, y1, y2)X(y1 − y2)(y1 − y2)
′X ′


for some positive weights ω(WY,X, y1, y2) > 0. This shows that variation in X(y1−y2)

along directions satisfying W(y1 − y2) = 0 is essential for identification of β under

CMLE, just as in our rank condition.

The presentation here is closely related to classical conditional likelihood approaches

(e.g., Rasch, 1960; Andersen, 1970; Chamberlain, 1980), but the formulation in The-

orem 1 highlights a useful structural parallel to linear models. While the sufficiency

argument is well known, we are not aware of prior work that frames the construction

of identifying pairs through the condition Ww⊥ = 0 with w⊥ ∈ {−1, 0, 1}T . This per-

spective unifies a number of existing results and provides a clean basis for constructing

and analyzing conditional likelihood estimators in settings with general fixed effect

structures, as illustrated in the examples that follow.

2.3 Examples

We now illustrate Theorem 1 in several models. Some of the examples are well-known,

while others are novel. In each case, we describe the fixed effect structure and provide

explicit constructions of vectors w⊥ (or matrices W⊥) that satisfy the orthogonality

condition Ww⊥ = 0. We aim to carry over as much intuition as possible from the linear

model analogy in Remark 2.1.

2.3.1 Standard fixed effects in panel data

This example corresponds to the setup in Example 2.1. Recall that dw = 1 and wt = 1

for all t ∈ {1, . . . , T}, so that the index in the logit model is X ′
tβ + A, with a scalar

fixed effect A shared across all time periods, andW = (1, . . . , 1) ∈ R1×T . To understand
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the identification strategy, consider first the analogous linear model, making the cross-

sectional index i explicit:

Yit = X ′
itβ + Ai + εit, t = 1, . . . , T, i = 1, . . . , n.

Here, we can eliminate Ai by differencing, e.g. for T = 2:

Yi1 − Yi2 = (Xi1 −Xi2)
′β + (εi1 − εi2).

This corresponds to the linear combination w′
⊥Yi with w⊥ = (1,−1)′. Crucially, since

w⊥ ∈ {−1, 0, 1}T , the same vector works for the logit model:

For the static panel logit with T = 2 we know that Pr
(
Yi = y

∣∣Xi, Ai, Yi1 + Yi2 = 1
)

is free of Ai. The conditioning event Yi1 + Yi2 = 1 restricts us to the pair y1 = (1, 0)′

and y2 = (0, 1)′, for which w⊥ = y1 − y2 = (1,−1)′. This recovers the classical results

of Rasch (1960) and Andersen (1970). For T > 2, any vector in {−1, 0, 1}T with

components summing to zero provides a valid w⊥. If Xiw⊥ varies sufficiently across

units, then β is identified.

2.3.2 Heterogeneous time trends

Let dw = 2, and for each t ∈ {1, . . . , T}, define the regressors associated with the fixed

effect as wt = (1, t)′, so that the index becomes X ′
t β + w′

t A = X ′
tβ + A1 + tA2, where

A1 is a unit-specific intercept and A2 a unit-specific time trend. The matrix W ∈ R2×T

consists of a row of ones and a row of time indices. Again, we consider the linear model

analog, making the cross-sectional index i explicit:

Yit = X ′
itβ + Ai1 + tAi2 + εit, t = 1, . . . , T, i = 1, . . . , n.

For the linear model, T = 3 is sufficient to eliminate both fixed effects:

Yi1 − 2Yi2 + Yi3 = (Xi1 − 2Xi2 +Xi3)
′β + (εi1 − 2εi2 + εi3).
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p T w⊥
0 2 (1, -1)’
1 4 (1, -1, -1, 1)’
2 7 (1, -1, -1, 0, 1, 1, -1)’
3 12 (1, -1, -1, 0, 1, 0, 0, 1, 0, -1, -1, 1)’
4 16 (1, -1, -1, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 1, 1, -1)’
5 23 (1, -1, -1, 0, 0, 1, 1, 0, 0, 0, -1, 0, -1, 0, 0, 0, 1, 1, 0, 0, -1, -1, 1)’

Table 1: The table shows the minimal number of time periods T and the corresponding
weight vector w⊥ needed to eliminate fixed effects of the form A1 + tA2 + . . .+ tpAp+1

in static binary logit panel models.

This linear combination corresponds to w⊥ = (1,−2, 1)′, which does not satisfy w⊥ ∈

{−1, 0, 1}T , and is therefore not applicable to the logit model. Indeed, for the static

panel logit model with heterogeneous time trends and T = 3, the coefficient β is gen-

erally not point-identified.

To eliminate both Ai1 and Ai2 in the logit model, we need w⊥ ∈ {−1, 0, 1}T such

that
∑T

t=1w⊥,t = 0 and
∑T

t=1w⊥,t t = 0. For T = 4 this is satisfied for w⊥ =

(1,−1,−1, 1)′, which implies that in the static logit model with heterogeneous time

trends, Pr
(
Y = y1

∣∣X,A
)
/Pr

(
Y = y2

∣∣X,A
)
is independent of A = (A1, A2) for y1 =

(1, 0, 0, 1)′ and y2 = (0, 1, 1, 0)′, since w⊥ = y1 − y2.

More generally, we can consider wt = (1, t, t2, . . . , tp)′, with corresponding index

X ′
t β + w′

t A = X ′
t β + A1 + t A2 + t2A3 + . . .+ tpAp+1.

Table 1 shows the minimal number of time periods T and corresponding weight vectors

w⊥ ∈ {−1, 0, 1}T that satisfy Ww⊥ = 0 for this model for p ≤ 5 (for p = 6 the minimal

T is 31). For p ≥ 1, the minimal weight vectors exhibit an alternating symmetry

pattern (even p antisymmetric, odd p symmetric) and can be constructed recursively by

placing the (p−1)-solution and its reversed copy (negated for antisymmetric cases) with

zero-padding and optimal overlap to minimize length while maintaining the constraint

w⊥ ∈ {−1, 0, 1}T .
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2.3.3 Overlapping fixed effects

Consider a setting with overlapping fixed effects where T = 3 and dw = 2. Define

W =

1 1 0

0 1 1

 ,

which yields the index structure

X ′
t β + w′

t A =


X ′

1 β + A1 if t = 1,

X ′
2 β + A1 + A2 if t = 2,

X ′
3 β + A2 if t = 3.

Note that observation t = 2 is affected by both fixed effects, while observations t = 1

and t = 3 are each affected by only one. To eliminate both A1 and A2, we can use

w⊥ = (1,−1, 1)′, which satisfies Ww⊥ = 0 since each fixed effect appears with net zero

weight. This may be the simplest non-trivial extension of the standard panel fixed

effects model to more general fixed effects.

2.3.4 Two-way fixed effects

Consider two-way fixed effects panel models, where each observation is indexed by a

unit-time pair t = (i, τ), with i ∈ {1, . . . , n} denoting individuals and τ ∈ {1, . . . , T }

denoting time periods. The total number of observations is T = n · T , and the logit

index takes the form X ′
iτβ +Ai +Bτ , where Ai and Bτ are unit and time fixed effects,

respectively. Again, consider the linear model analogue:

Yiτ = X ′
iτβ + Ai +Bτ + εiτ . (4)

12



For n = T = 2, the standard difference-in-differences strategy eliminates both fixed

effects:

(Y11 − Y12)− (Y21 − Y22) = [(X11 −X12)− (X21 −X22)]
′β + [(ε11 − ε12)− (ε21 − ε22)].

With Y = (Y11, Y12, Y21, Y22)
′, the linear combination in the last display corresponds to

w⊥ = (1,−1,−1, 1)′, which satisfies w⊥ ∈ {−1, 0, 1}T and is therefore applicable to the

logit model as well.

For such 2 × 2 subpanels with two-way fixed effects, identification strategies based

on w⊥ = (1,−1,−1, 1)′ have been developed by Charbonneau (2017) for binary logit

models, and by Jochmans (2017) for certain nonlinear models with multiplicative un-

observables. Such model structures arise naturally in applications such as matched

employer-employee data or international trade.

It is convenient to think of w⊥ as the vectorization of an n × T matrix. In the

n = T = 2 case:

w⊥ = vec

 1 −1

−1 1

 =


1

−1

−1

1

 .

Our general condition Ww⊥ = 0 is equivalent to requiring that this n × T matrix has

all row and column sums equal to zero. When n = T = 3, many valid vectors w⊥ exist,

for instance:

w⊥ = vec


1 −1 0

0 1 −1

−1 0 1

 .

Thus, the construction generalizes to larger n× T subpanels.

2.3.5 Dyadic network formation

This corresponds to the structure in Example 2.2. Recall that T = n(n − 1)/2 and

dw = n, where each observation corresponds to an unordered dyad (i, j) with i ̸= j and
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index structure X ′
ijβ + Ai + Aj. The corresponding linear model reads

Yij = X ′
ijβ + Ai + Aj + εij,

which is essentially the same model as (4), except for the symmetry Yij = Yji and that

Yii is unobserved.

For n = 3 we cannot eliminate the fixed effects in this model, because we have

the same number of observations (Y12, Y13, Y23) as fixed effects (A1, A2, A3). However,

for n = 4 we can simply reproduce the same different strategy as in model (4) by

considering the 2× 2 subpanel given by i ∈ {1, 2} and j ∈ {3, 4}, which gives

(Y13 − Y14)− (Y23 − Y24) = [(X13 −X14)− (X23 −X24)]
′β + [(ε13 − ε14)− (ε23 − ε24)].

Defining the appropriate vectorization operator by

(Y12, Y13, Y14, Y23, Y24, Y34)
′ = vech


∗ Y12 Y13 Y14

Y12 ∗ Y23 Y24

Y13 Y23 ∗ Y34

Y14 Y24 Y34 ∗

 ,

we can write the differencing vector used here as

w⊥ = vech


∗ 0 1 −1

0 ∗ −1 1

1 −1 ∗ 0

−1 1 0 ∗

 ,

which satisfies w⊥ ∈ {−1, 0, 1}T , and is therefore equally applicable to the logit model.

Indeed, the tetrad configuration in Graham (2017) corresponds exactly to this vector

w⊥ and the corresponding outcome pairs satisfying w⊥ = y1 − y2.

This idea extends to larger subnetworks. For instance, with n = 5, one finds valid
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examples such as:

w⊥ = vech



∗ 1 0 0 −1

1 ∗ 0 0 −1

0 0 ∗ −1 1

0 0 −1 ∗ 1

−1 −1 1 1 ∗


, w⊥ = vech



∗ 1 1 −1 −1

1 ∗ −1 1 −1

1 −1 ∗ −1 1

−1 1 −1 ∗ 1

−1 −1 1 1 ∗


.

These w⊥ again correspond to identifying configurations that satisfy the conditions of

Theorem 1.

2.3.6 Triadic network models

This example generalizes the two-way panel model structure to three dimensions, fol-

lowing Muris and Pakel (2025). Each observation is indexed by a triad t = (i, j, k),

with i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}, and k ∈ {1, . . . , n3} denoting elements from three

disjoint partite sets. The logit index takes the form X ′
ijkβ+Aij +Bjk +Cik, where Aij,

Bjk, and Cik are pairwise fixed effects. Consider the linear model analogue:

Yijk = X ′
ijkβ + Aij +Bjk + Cik + εijk.

To eliminate all three sets of pairwise fixed effects, we need a triple-differencing strategy.

Consider a hexad consisting of two nodes from each part: i ∈ {i1, i2}, j ∈ {j1, j2}, and

k ∈ {k1, k2}. The triple difference

[(Yi1j1k1 − Yi1j1k2)− (Yi1j2k1 − Yi1j2k2)]− [(Yi2j1k1 − Yi2j1k2)− (Yi2j2k1 − Yi2j2k2)]

eliminates all pairwise fixed effects. This corresponds to w⊥ = (1,−1, 1,−1, 1,−1, 1,−1)′,

and since w⊥ ∈ {−1, 0, 1}T , the same vector works for the logit model. Each pair ap-

pears exactly twice in the eight triads: once with weight +1 and once with weight −1,

ensuring that the net effect for each (i, j), (j, k), and (i, k) pair is zero, thus satisfying

Ww⊥ = 0.
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This hexad-based identification strategy for triadic models was developed by Muris

and Pakel (2025). Such models arise naturally in applications where a “team” is formed

by selecting one node from each of three sets—for instance, firm-industry-time inter-

actions, or trade triplets involving importer, exporter, and product. Unlike in dyadic

models, however, Muris and Pakel (2025) show that even under sparsity, identification

and asymptotic normality require stronger conditions: the presence of a growing num-

ber of informative hexads. Their framework illustrates how richer forms of unobserved

heterogeneity, while modeling more realistic structures, come at a cost in terms of data

requirements.

2.4 Main Takeaways

• For the static binary logit models with fixed effects in Assumption 1, it is well

known that conditioning on the sufficient statistic WY removes dependence on

the fixed effects A. However, identification of β requires more than sufficiency:

we need outcome pairs (y1, y2) such that Wy1 = Wy2 and X(y1 − y2) exhibits

sufficient variation. This condition is central to Theorem 1.

• A key insight is the structural parallel to linear models (Remark 2.1): Differencing

strategies that eliminate fixed effects in linear models also eliminate them in

binary logit models — provided the differencing vector satisfies w⊥ ∈ {−1, 0, 1}T .

This constraint reflects the binary nature of the data and leads to a unifying

framework for constructing valid conditional likelihood estimators across a wide

range of panel and network models.

3 Sufficient statistic for dynamic logit models

3.1 Model setup

We now turn to dynamic binary choice logit models with generalized fixed effects,

extending the approach used for static models in Section 2. In the current section, we
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focus on purely dynamic specifications — generalized autoregressive models — without

additional covariates X. As in the static case, our identification strategy relies on

finding sufficient statistics that eliminate the fixed effects. In contrast, Section 4 below

considers dynamic models that include covariates X, where identification will instead

be based on moment conditions that are invariant to the fixed effects.

Most of the notation carries over from the static case. In particular, the definitions

of Y , W , and A remain unchanged. However, we require some additional structure to

capture the temporal dependence in the outcomes. Let Y 0 denote a vector of initial

conditions, and define

Y t−1 = (Yt−1, Yt−2, . . . , Y1, Y
0)

to be the history of outcomes up to time t − 1, including initial conditions. The

following assumption gives the class of generalized autoregressive models considered in

this section.

Assumption 2 The data-generating process is

Pr
(
Y = y

∣∣Y 0, A
)
=

T∏
t=1

Pr
(
Yt = yt

∣∣Y t−1, A
)
,

Pr
(
Yt = yt

∣∣Y t−1, A
)
=

[exp(πt(Y
t−1, θ) + w′

tA)]
yt

1 + exp(πt(Y t−1, θ) + w′
tA)

,

where θ is an unknown parameter and πt(·, ·) is a known function for every t ∈ {1, . . . , T}.

Note that the specification of the unobserved fixed effects A ∈ Rdw and the non-

random regressor vectors wt ∈ Rdw is unchanged from the static case. Crucially, the

model imposes no restrictions on the dependence between the fixed effects A and the

initial condition Y 0.

Example 3.1 (Dynamic panel data) This example generalizes Example 2.1 by al-

lowing for state dependence through a lagged dependent variable. Specifically, suppose
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that πt(Y
t−1, θ) = Yt−1 γ, so that the model becomes:

Pr(Yt = 1 | Y t−1, A) =
exp(Yt−1 γ + A)

1 + exp(Yt−1 γ + A)
,

where γ ∈ R captures state dependence while A ∈ R captures individual-specific hetero-

geneity as before. For this baseline model, there are well-known results due to Cham-

berlain (1978) and based on Cox (1958) that show that how to identify and estimate

γ via conditional likelihood by conditioning on sufficient statistics based on transition

counts.7 Our goal in this section is to generalize those existing results to more general

fixed effect structures.

Example 3.2 (Dynamic dyadic network formation) This example extends the dyadic

model of Example 2.2 to a dynamic setting. Suppose we observe a sequence of undi-

rected binary networks among n agents over periods τ = 0, 1, . . . , T . Each observation

corresponds to a dyad (i, j), and the link indicator Yijτ = Yjiτ ∈ {0, 1} records whether a

link between i and j exists in period τ . The dynamic logit model considered in Graham

(2016) takes the form:

Pr(Yijτ = 1 | Yij,τ−1, Rij,τ−1, Aij) =
exp (Yij,τ−1 γ +Rij,τ−1 δ + Aij)

1 + exp (Yij,τ−1 γ +Rij,τ−1 δ + Aij)
,

where Yij,τ−1 is the lagged link indicator for the same dyad, Rij,τ−1 :=
∑

k/∈{i,j} Yik,τ−1Yjk,τ−1

is the number of shared friends of i and j in the previous period, Aij ∈ R is a dyad-

specific fixed effect, and γ and δ are unknown parameters. To map this into our general

framework (Assumption 2), we define T =
(
n
2

)
· T , where T is the number of observed

time periods in Graham’s model, and
(
n
2

)
is the number of dyads. We then treat each

dyad-time pair (i, j, τ) as a single observation indexed by t = 1, . . . , T , see Section 3.4

below for more details. In this formulation, the logit index for observation t becomes

πt(Y
t−1, Xθ) = Yij,τ−1 γ +Rij,τ−1 δ.

7Chamberlain (1984), Magnac (2004) and D’Addio and Honoré (2010) generalize those result fur-
ther.
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3.2 Generalized sufficient statistics

The following lemma is central to all identification results in this section.

Lemma 2 Suppose Assumption 2 holds with fixed initial conditions Y 0 = y0. Let

y, ỹ ∈ {0, 1}T be any two outcome sequences, and define yt−1 = (yt−1, yt−2, . . . , y1, y
0)

and ỹ t−1 = (ỹt−1, ỹt−2, . . . , ỹ1, y
0), for each t ∈ {2, . . . , T}. Assume further that:

(i)
∑T

t=1wtyt =
∑T

t=1 wtỹt.

(ii)
[(
wt, πt(y

t−1, θ)
)

: t = 2, . . . , T}
]
is a permutation of

[(
wt, πt(ỹ

t−1, θ)
)

: t =

2, . . . , T}
]
.

Then we have

Pr(Y = y|Y 0 = y0, A)

Pr(Y = ỹ|Y 0 = y0, A)
= exp

{
T∑
t=1

[
yt πt(y

t−1, θ)− ỹt πt(ỹ
t−1, θ)

]}
,

which does not depend on A.

The proof is given in the appendix.

3.3 AR(p) panel data models

Our first example of a model that satisfies Assumption 2 and for which Lemma 2 yields

immediate and useful identification results is the AR(1) model. In this case, we take

θ = γ ∈ R, and set πt(Y
t−1, θ) = Yt−1 γ, with initial condition Y 0 = Y0 given by the

observed outcome in period t = 0. Under this specification, the model in Assumption 2

becomes:

Pr
(
Y = y

∣∣Y0 = y0, A
)
=

T∏
t=1

[
1

1 + exp(yt−1 γ + w′
t A)

]1−yt [ exp(yt−1 γ + w′
t A)

1 + exp(yt−1 γ + w′
tA)

]yt
.

(5)

We are going to discuss the AR(1) model in detail here, and afterwards briefly summa-

rize the extension to AR(p) model for p > 1, with details given in the appendix.
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In order to obtain identification results that mirror the results for the static model

above as close as possible, we furthermore impose the following assumption on wt =

(wt,1, . . . , wt,dw) here:

wt,k ∈ {0, 1}, for all k ∈ {1, . . . , dw}, and
dw∑
k=1

wt,k = 1, for all t ∈ {1, . . . , T}.

(6)

These constraints on wt may appear overly restrictive at first glance. However, as

we will explain in Remark 3.1, these constraints are in fact without loss of general-

ity from the perspective of constructing sufficient statistics for the fixed effect A in

this model. To simplify notation, we define the lagged outcome T -vector as Ylag =

(Y0, Y1, . . . , YT−1)
′. Similarly, we define the “lead” version of W = (w1, . . . , wT ) by

Wlead = (w2, w3, . . . , wT , 0dw×1) ∈ Rdw×T .

Theorem 2 We assume the AR(1) model in (5), with wt satisfying the restrictions in

(6). We treat the initial condition Y0 = y0 as fixed and known.

(i) Then, (WY,WYlag) is a statistic that is sufficient for the nuisance parameter A

(conditional on Y0), in the sense that the distribution of Y given (WY,WYlag)

and Y0 does not depend on A. Since Y0 = y0 is treated as fixed, we can equiv-

alently express this sufficient statistic as the linear transformation VY , where

V := (W′,W′
lead)

′.

(ii) Suppose further that there exist two binary vectors y, ỹ ∈ {0, 1}T such that Vy =

Vỹ and
∑T

t=1 ytyt−1 ̸=
∑T

t=1 ỹtỹt−1, where we set Y0 = y0 = ỹ0. Then, the autore-

gressive parameter γ is uniquely identified from the distribution of Y conditional

on Y0 = y0.

The proof is provided in the appendix. Part (i) of the theorem establishes that the

sufficient statistic for the fixed effect A in this model is given by the pair (WY,WYlag),

which can be explicitly written as
(∑T

t=1 wtyt,
∑T

t=1 wtyt−1

)
. The first term,

∑T
t=1wtyt,
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is familiar from the static model in Section 2, where it formed the sufficient statistic for

A. The second term,
∑T

t=1 wtyt−1, is new and arises due to the autoregressive structure.

To understand the role of these statistics, consider two outcome paths y, ỹ ∈ {0, 1}T .

Using only
∑T

t=1wtyt =
∑T

t=1wtỹt and y0 = ỹ0, the likelihood ratio simplifies as follows:

Pr(Y = y|Y0 = y0, A)

Pr(Y = ỹ|Y0 = y0, A)
= exp

[
γ

T∑
t=1

(ytyt−1 − ỹtỹt−1)

]
T∏
t=2

1 + exp(ỹt−1γ + w′
tA)

1 + exp(yt−1γ + w′
tA)

.

Here, the second term still depends on A, which shows that, in contrast to the static

model, matching only
∑T

t=1wtyt is not sufficient to eliminate the fixed effect from

the likelihood ratio. To fully eliminate A from this ratio, we also need to use that∑T
t=2 yt−1 =

∑T
t=2 ỹt−1 and

∑T
t=2wtyt−1 =

∑T
t=2 wtỹt−1 and wt,k ∈ {0, 1} with

∑dw
k=1wt,k =

1. Under those conditions, one can show that
∏T

t=2
1+exp(γỹt−1+w′

tA)

1+exp(γyt−1+w′
tA)

= 1, and therefore

Pr(Y = y|Y0 = y0, A)

Pr(Y = ỹ|Y0 = y0, A)
= exp

[
γ

T∑
t=1

(ytyt−1 − ỹtỹt−1)

]

This shows that γ can be point-identified from the likelihood ratio, as long as
∑T

t=1 ytyt−1 ̸=∑T
t=1 ỹtỹt−1, which is precisely the content of part (ii) of the theorem.

Remark 3.1 The restrictions wt,k ∈ {0, 1} and
∑dw

k=1wt,k ∈ {0, 1} in Assumption 6

may appear overly restrictive. However, these conditions are without loss of generality

for the purpose of constructing sufficient statistics and identifying γ via conditional

likelihood methods. To see this, consider the general autoregressive model where wt ∈

Rdw can take any values. Let Ω = {φ1, φ2, . . . , φdω} ⊂ Rdw denote the set of distinct

values that wt assumes across t = 1, . . . , T , where dω is the cardinality of Ω. We

can then define indicator variables ωt,k = 1(wt = φk), for k = 1, . . . , dω, implying

that ωt = (ωt,1, . . . , ωt,dω)
′ satisfies the binary restrictions on wt in (6). We then have

w′
tA = ω′

tA
∗, where A∗ = (φ′

1A, . . . , φ
′
dω
A)′ ∈ Rdω .

One can show that the sufficient statistics for A in the original model with w′
tA

are identical to those for A∗ in the transformed model with ω′
tA

∗, as characterized in

Theorem 2.
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Remark 3.2 Applying Lemma 1 in the context of part (ii) of Theorem 2 gives the

following: There exist y, ỹ ∈ {0, 1}T with y ̸= ỹ and Vy1 = Vy2 if and only if there

exists w⊥ ∈ {−1, 0, 1}T with w⊥ ̸= 0 and Vw⊥ = 0. This can be computationally very

useful to construct such pairs y, ỹ ∈ {0, 1}T that allow identification of γ. However,

the additional identification condition
∑T

t=1 ytyt−1 ̸=
∑T

t=1 ỹtỹt−1 is non-linear in the

outcomes and can therefore not be expressed in terms of w⊥ only.

Example 3.1 (cont.) The simplest example covered by Theorem 2 is the case where

wt = 1 for all t = 1, . . . , T , implying a standard individual-specific fixed effect A that

enters identically in every period. In this setting, the model reduces to a pure logit AR(1)

panel model with a scalar fixed effect and no covariates. The sufficient statistics for A

in this model — namely, (
∑T

t=1 Yt,
∑T

t=1 Yt−1) — are well known since Cox (1958), and

are often expressed in terms of Y0 (which we condition on throughout),
∑T−1

t=1 Yt, and

YT . To identify the autoregressive parameter γ, one must observe at least T = 3 periods

(in addition to the initial condition Y0). For example, when T = 3 and Y0 = 0, the

sequences y = (1, 0, 1) and ỹ = (0, 1, 1) satisfy all conditions in part (ii) of Theorem 2

to guarantee identification of γ.

Example 3.5 Consider quarterly panel data on binary outcomes Y0, Y1, . . . , YT , and

suppose we specify a logit AR(1) model with a single index of the form

Yt−1 γ +
4∑

q=1

Aq wt,q,

where wt,q is an indicator for quarter q ∈ {1, 2, 3, 4} and Aq are quarter and unit-specific

fixed effects. To identify γ based on part (ii) of Theorem 2 we require y, ỹ ∈ {0, 1}T

that satisfy

T∑
t=1

wqt(yt − ỹt) = 0, and
T∑
t=1

wqt(yt−1 − ỹt−1) = 0, for each q = 1, 2, 3, 4.

Finding a solution with y ̸= ỹ requires T = 6 quarterly observations (plus the initial

quarter Y0), and the solution satisfies y − ỹ = ±(1, 0, 0, 0,−1, 0). In addition, we
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need to satisfy the condition
∑T

t=1 ytyt−1 ̸=
∑T

t=1 ỹtỹt−1, e.g. for Y0 = 0, by choosing

y = (0, 0, 0, 0, 1, 1) and ỹ = (1, 0, 0, 0, 0, 1). This shows that γ is identified for T = 6.

Example 3.6 Consider the case dw = 2 with wt,1 = 1 and wt,2 = t, corresponding to a

model with heterogeneous linear time trends and single index

Yt−1 γ + A1 + t A2.

By Remark 3.1, this model can be reparameterized — for the purpose of constructing

sufficient statistics — as a model with time-specific fixed effects:

Yt−1 γ + At,

where dw = T and At denotes a distinct fixed effect for each time period. In this formu-

lation, the fixed effects vary freely over time, and no nontrivial sufficient statistics can

be constructed to eliminate A. As a result, our sufficiency-based identification strategy

cannot be applied, and Theorem 2 yields a negative result in this case: the autoregres-

sive parameter γ is not identified via conditional likelihood. However, as discussed in

Section 4.3 of Honoré and Weidner (2024), identification is still possible using an al-

ternative approach. Specifically, in the autoregressive panel model with heterogeneous

linear time trends (i.e., index Yt−1 γ+A1+t A2), the parameter γ can be identified via a

moment condition strategy, as described in Section 4 below, provided that T ≥ 8. This

example illustrates that for sufficiently general index structures — particularly those in-

volving unrestricted time-varying fixed effects — the sufficient statistics approach may

fail, while the moment condition approach can still succeed.

Generalization to AR(p) models with p > 1

We now generalize the previous example by considering an AR(2) model with πt(Y
t−1, θ) =

Yt−1 γ1 + Yt−2 γ2 and initial condition Y 0 = (Y0, Y−1) ∈ {0, 1}2. Under this setup, the
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model specified in Assumption 2 becomes:

Pr
(
Y = y

∣∣Y0 = y0, A
)

=
T∏
t=1

[
1

1 + exp(yt−1 γ1 + yt−2 γ2 + w′
t A)

]1−yt [ exp(yt−1 γ1 + yt−2 γ2 + w′
tA)

1 + exp(yt−1 γ1 + yt−2 γ2 + w′
t A)

]yt
.

(7)

We refer readers to Appendix Section A.1 for a general treatment of the AR(p) models

with p > 1. Throughout, we maintain the assumption that for all t ∈ {1, . . . , T}, the

vector of weights wt = (wt,1, . . . , wt,dw) satisfies the restrictions in (6).

Applying Lemma 2, we show in Appendix Section A.1 that the likelihood ratio for

two outcome paths y, ỹ ∈ {0, 1}T 8

Pr(Y = y|Y0 = y0, A)

Pr(Y = ỹ|Y0 = y0, A)

is invariant to A if the following four conditions hold:

T∑
t=1

wt yt =
T∑
t=1

wt ỹt (8)

T∑
t=1

wt yt−1 =
T∑
t=1

wt ỹt−1

T∑
t=1

wt yt−2 =
T∑
t=1

wt ỹt−2

T∑
t=1

wt yt−1 yt−2 =
T∑
t=1

wt ỹt−1 ỹt−2.

The first condition coincides with Assumption (i) in Lemma 2 while the remaining

three are equivalent statements of Assumption (ii) for the AR(2). That is, they ensure

together that
[(
wt, yt−1 γ1 + yt−2 γ2

)
: t = 2, . . . , T

]
is a permutation of

[(
wt, ỹt−1 γ1 +

ỹt−2 γ2
)
: t = 2, . . . , T

]
.

8These generalize the sufficient statistics found in Chamberlain (1984) and Magnac (2000).
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Example 3.7 Consider the standard AR(2) model with dw = 1, wt = 1 for all t. In

this case, the conditions in (8) can only be satisfied if T ≥ 4. For instance, with T = 4

and initial condition Y 0 = (0, 1), y = (1, 0, 0, 0) and ỹ = (0, 1, 0, 0) form a valid pair.

See also Chamberlain (1985) and Honoré and Kyriazidou (2000).

Example 3.8 In the spirit of Example 3.5, consider quarterly panel data on binary

outcomes Y−1, Y0, Y1, . . . , YT , and assume an AR(2) structure with a single index

Yt−1 γ1 + Yt−2 γ2 +
4∑

q=1

Aq wt,q,

where wt,q are indicators for quarter q ∈ {1, 2, 3, 4}. In this setting, the set of re-

strictions (8) can only be satisfied for T ≥ 7. For example, for the initial condition

Y 0 = (0, 0), the outcome sequences y = (0, 0, 0, 0, 1, 0, 1) and ỹ = (1, 0, 0, 0, 0, 0, 1) form

a pair that allows identification of γ2.

Remark 3.3 In general, the conditional likelihood approach does not allow for the iden-

tification of parameters other than the final autoregressive coefficient γp in the (pure)

AR(p) model. To build intuition, consider again the simple case p = 2. Then, it

is a straightforward exercise (see e.g Appendix Section A.1) to show that the restric-

tions in (8) imply
∑T

t=1 ytyt−1 =
∑T

t=1 ỹtỹt−1. In turn, this causes γ1 to drop out from

the likelihood ratio Pr(Y=y|Y0=y0,A)
Pr(Y=ỹ|Y0=y0,A)

. This example illustrates the property that the suf-

ficient statistics resulting from Lemma 2 absorb all variation relevant for identifying

γ1, . . . , γp−1. This leaves γp as the only parameter that can be identified via conditional

likelihood in the AR(p) setting. However, as was the case for the model with heteroge-

neous time trend in Example 3.6, identification is possible using an alternative approach

that relies on moment conditions.

3.4 Dynamic dyadic network formation

We now consider the dyadic network formation model of Graham (2016), introduced

in Example 3.2. This model falls within the class of generalized autoregressive logit
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models studied above, and we show how our identification strategy based on Lemma 2

applies in this setting.

We model binary outcomes Yijτ = Yjiτ ∈ {0, 1} for individuals i, j ∈ {1, . . . , n} with

i ̸= j, and time periods τ ∈ {1, . . . , T }. The initial condition at τ = 0 is denoted by

Y 0. Each dyad-time pair (i, j, τ) defines a single observation, and we set T =
(
n
2

)
· T as

the total number of observations. Each observation t = (i, j, τ) is treated as an element

of the outcome vector Y = (Y1, . . . , YT )
′ ∈ {0, 1}T .

To express the model in the form of Assumption 2, we impose a deterministic or-

dering of dyads within each time period. The overall observation index t respects time

ordering, i.e. if τ1 < τ2 then all observations from period τ1 precede those from τ2.

For each observation t = (i, j, τ), we define the regressor wt ∈ R(
n
2) as a unit vector

selecting the dyad (i, j), so that w′
tA = Aij, where A ∈ R(

n
2) collects all dyad-specific

fixed effects. The logit index for observation t is then

πt(Y
t−1, θ) + w′

tA = Yij,τ−1 γ +Rij,τ−1 δ + Aij,

with parameters θ = (γ, δ)′ and Rij,τ−1 =
∑

k/∈{i,j} Yik,τ−1Yjk,τ−1 denoting the number

of shared friends in the previous period.

Throughout, we write Y··,τ for the collection of Yij,τ over all dyads, and use Dn to

denote the set of all
(
n
2

)
dyads. Given Y··,τ and (i, j) ∈ Dn, the covariates entering the

index at time τ + 1 are

Zij(Y··,τ ) :=

(
Yij,τ ,

∑
k ̸=i,j

Yik,τYjk,τ

)
∈ {0, 1} × Z+.

We now describe the sufficient statistic structure implied by Lemma 2. To simplify

the exposition, we focus on the minimal case T = 3, which is also the specification

considered in Graham (2016). For each outcome vector y ∈ {0, 1}T , we define the set

of alternative sequences

Ycond(y) =

{
ỹ ∈ {0, 1}T :∀(i, j) ∈ Dn we have: yij,3 = ỹij,3,
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and for all τ ∈ {1, 2}, we have:

Zij(y··,τ ) = Zij(ỹ··,τ ) or Zij(y··,τ ) = Zij(ỹ··,3−τ )

}
.

By Lemma 2, the conditional likelihood ratio Pr(Y = y | Y 0, A)/Pr(Y = ỹ | Y 0, A) is

invariant to A for all ỹ ∈ Ycond(y). This yields the conditional likelihood

Lcond(γ, δ) =

∏
(i,j)∈Dn

exp
(∑3

τ=2 Yij,τ (γYij,τ−1 + δRij,τ−1)
)

∑
ỹ∈Ycond(Y )

∏
(i,j)∈Dn

exp
(∑3

τ=2 ỹij,τ (γỹij,τ−1 + δR̃ij,τ−1)
) ,

where R̃ij,τ−1 =
∑

k/∈{i,j} ỹik,τ−1 · ỹjk,τ−1. While this formulation is exact, the denom-

inator is computationally infeasible to evaluate for large n, as the set Ycond(y) grows

exponentially with the number of dyads.

To address this, Graham (2016) proposes a restricted subset of Ycond(y) based on

the concept of “stable dyads”, which allows feasible computation in large-network set-

tings. An alternative approach, suitable for small n but many independent network

observations (as in Graham 2013), is to compute the exact conditional likelihood using

the full set Ycond(y) or a tractable subset.

A particularly convenient and computationally efficient subset is the two-element

set

Y∗
cond(y) =

{
ỹ ∈ {0, 1}T : y··,3 = ỹ··,3,

and for all τ ∈ {1, 2} : y··,τ = ỹ··,τ or y··,τ = ỹ··,3−τ

}
.

This set contains at most two elements: the original network y and the version with

periods τ = 1 and 2 swapped. When y··,1 = y··,2, the set is a singleton. For n = 3, one

can show that Y∗
cond(y) = Ycond(y) for all networks y. For n = 4 and n = 5, numerical

checks confirm that Y∗
cond(y) = Ycond(y) in more than 95% of all configurations, making

this approximation attractive in small-network applications.

In summary, this framework supports two estimation strategies: Firstly, in settings
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with large n and few time periods, feasible estimation can be achieved using restricted

conditioning sets such as those based on stable dyads (Graham, 2016). Secondly, in

settings with small n but many repeated network observations, exact conditional like-

lihood estimation is tractable and efficient using either Ycond(y) or its simplification

Y∗
cond(y).

The results extend naturally to longer time horizons T > 3, though the structure of

the conditioning sets becomes more complex. Likewise, the framework accommodates

richer dynamic specifications, provided the conditions in Lemma 2 continue to hold.

3.5 Main Takeaways

• The conditional likelihood approach based on sufficient statistics extends nat-

urally to dynamic models. Lemma 2 characterizes the sufficient statistics for

generalized autoregressive logit models with fixed effects. We have shown how to

apply this result in both dynamic panel and dynamic network settings.

• In contrast to the static case, the sufficient statistics approach does not always

identify all the common parameters in dynamic models. We illustrated this in two

examples (i) in the AR(1) model with heterogeneous time trends, the sufficient

statistics approach fails to identify the autoregressive parameter γ; (ii) in AR(p)

models with p > 1, the sufficient statistics approach can identify only the final

lag coefficient γp. In the next section, we discuss an alternative to the sufficient

conditions approach, which is based on moment conditions. This approach will

lead to identification of all the common parameters in the two examples.

4 Moment conditions for dynamic logit models

We now turn to an alternative identification strategy for non-linear panel models based

on moment conditions that do not depend on the fixed effects. Unlike the conditional

likelihood approach used in Sections 2 and 3, which relies on sufficient statistics, the
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moment-based approach developed here applies to a larger class of models and accom-

modates richer forms of unobserved heterogeneity.

While fixed-effect-free moment conditions had been constructed in specific models

before, the general idea was formalized in the context of semiparametric panel models by

Bonhomme (2012), who called it “functional differencing”. Its applicability to discrete

choice models was recently emphasized by Kitazawa (2022) and Honoré and Weidner

(2024).

4.1 Model setup

The model and notation are essentially unchanged compared to Section 3, the only

difference is that we now also allow for additional strictly exogenous covariates X, as

we had in Section 2. Assumption 2 then generalizes as follows.

Assumption 3 The data-generating process is

Pr
(
Y = y

∣∣Y 0, X,A
)
=

T∏
t=1

Pr
(
Yt = yt

∣∣Y t−1, X,A
)
,

Pr
(
Yt = yt

∣∣Y t−1, X,A
)
=

[exp(πt(Y
t−1, Xt, θ) + w′

t A)]
yt

1 + exp(πt(Y t−1, Xt, θ) + w′
tA)

,

where θ is an unknown parameter and πt(·, ·, ·) is a known function for every t ∈

{1, . . . , T}.

Our goal is again to identify the parameter θ without imposing restrictions on the

distribution of the fixed effect A. The model in Assumption 3 nests many dynamic panel

and network models. Our baseline Examples 3.1 and 3.2 remain essentially unchanged,

except for the additional covariates Xt. Thus, in Example 3.1 the specification becomes

πt(Y
t−1, Xt, θ) = Yt−1 γ +X ′

t β,
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where θ = (γ, β)′ while generalizing Example 3.2 gives

πt(Y
t−1, Xt, θ) = Yij,τ−1 γ +Rij,τ−1 δ +X ′

t β

with θ = (γ, δ)′.

It is sometimes possible to extend the identification strategy based on sufficient

statistics to models with additional covariates. For example, Honoré and Kyriazidou

(2000) apply this approach to an AR(1) panel logit model with covariates by condi-

tioning on subsets of the data where covariate values are identical across adjacent time

periods. More generally, the results in Section 3 can be applied to such models by treat-

ing X as fixed throughout and absorbing the covariate dependence of πt(Y
t−1, Xt, θ)

into the definition of πt. However, the sufficiency-based approach typically works only

under restrictive support conditions on the covariates. In contrast, the moment condi-

tion strategy developed in this section applies more broadly and often accommodates

arbitrary variation in X.

4.2 Identification via fixed-effect-free moment conditions

As discussed above, the sufficient statistics approach typically breaks down in dynamic

settings with covariates that vary freely over time. This motivates an alternative strat-

egy based on moment functions that depend on the parameters of interest but not on

the fixed effects. Specifically, we aim to find functions m(Y, Y 0, X, θ) such that

E
[
m(Y, Y 0, X, θ)

∣∣Y 0, X,A
]
= 0. (9)

Moment functions satisfying (9) are valid for identification and estimation, as they are

invariant to the fixed effect A and therefore unaffected by the incidental parameter

problem. To characterize when such functions exist, we use a combinatorial argument

that provides a lower bound on the dimension of the space of fixed-effect-free moment
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functions,9 leading to the following theorem.

To state the theorem, we introduce some additional notation. For each time period

t ∈ {1, . . . , T}, define the set of distinct values that the index πt(Y
t−1, Xt, θ) can take

across all possible outcome histories (yt−1, yt−2, . . . , y1) ∈ {0, 1}t−1 as

Πt(Y
0, X, θ) :=

{
πt((yt−1, yt−2, . . . , y1, Y

0), Xt, θ) : (yt−1, yt−2, . . . , y1) ∈ {0, 1}t−1
}
,

Throughout this section, we treat Y 0,X, and θ as fixed. While we make these arguments

explicit in the notation for mathematical precision, they are otherwise unimportant to

the combinatorial structure we analyze and can be regarded as fixed and given (and

thus ignored) for the remainder of the discussion. Let

Qt(Y
0, X, θ) := |Πt(Y

0, X, θ)|

denote the number of elements in the set Πt(Y
0, X, θ), that is, the number of distinct

values that the index πt((yt−1, yt−2, . . . , y1, Y
0), Xt, θ) can take across different outcome

histories. By construction, we have Qt(Y
0, X, θ) ≤ 2t−1, but in many practical models

we have limited dependence on past outcomes andQt(Y
0, X, θ) is therefore often (much)

smaller. Also, in most models, Qt(Y
0, X, θ) remains constant across typical values of

Y 0, X, and θ, but may be different at specific points (e.g., when θ = 0).

Next, define the set of all possible linear combinations of the wt’s, where each

coefficient kt is an integer between 0 and Qt(Y
0, X, θ):

D(Y 0, X, θ) :=

{
T∑
t=1

kt wt : (k1, . . . , kT ) ∈
T∏
t=1

{
0, 1, . . . , Qt(Y

0, X, θ)
}}

⊂ Rdw .

The remark and examples below will help clarify the intuition behind the definition of

the set D(Y 0, X, θ). As before, we write |D(Y 0, X, θ)| to denote its cardinality. The

following result provides a lower bound on the number of linearly independent fixed-

9See also Dano (2023) for an alternative strategy tailored to standard AR(p) logit models with
p ≥ 1.

31



effect-free moment conditions that exist in the class of dynamic models considered in

this section.

Theorem 3 Let the model be given by Assumption 3, and let Y 0, X, θ be given values

of the initial conditions, covariates, and common parameters. Then, the number of

linearly independent moment functions of the form (9) is at least equal to

2T −
∣∣D(Y 0, X, θ)

∣∣ .
In particular, if |D(Y 0, X, θ)| < 2T , then non-zero moment functions of the form (9)

exist.

Theorem 3 provides a sufficient condition for the existence of non-zero moment

functions m(Y, Y 0, X, θ) satisfying (9). However, the result does not characterize the

structure of these functions, nor does it guarantee that they depend on θ in a way that

allows identification. In practice, constructing such moment functions, and verifying

that they identify θ, is typically model-specific and requires additional algebraic or

numerical insight. Concrete examples are discussed below.

Even so, the existence result in Theorem 3 is useful. For example, once existence

is guaranteed, one can apply the general functional-analytic framework developed by

Bonhomme (2012) to compute the moment conditions numerically. In this “functional

differencing” approach, moment functions can be approximated even when closed-form

expressions are unavailable.

Whether obtained analytically or numerically, valid moment functionsm(Y, Y 0, X, θ)

can be used to construct GMM estimators that are root-n consistent under standard

regularity conditions.

Remark 4.1 The static logit model provides a useful special case for understanding the

structure and role of the set D(Y 0, X, θ). In that model, we have Qt(Y
0, X, θ) = 1 for

all t, so the set reduces to

32



D =

{
T∑
t=1

ytwt : y ∈ {0, 1}T
}
,

which is simply the set of all possible values that the sufficient statistic WY can take. As

discussed in Section 2, identification in the static model hinges on whether the mapping

Y 7→ WY is injective. If WY takes a distinct value for every realization y ∈ {0, 1}T , i.e.,

if |D| = 2T , then the existence of the sufficient statistic is not useful for identification

or estimation of θ, and no fixed-effect-free moment conditions exist. This explains the

condition |D| < 2T in Theorem 3, which guarantees the existence of nontrivial moment

functions precisely when the sufficient statistic does not uniquely index every outcome

configuration — that is, when different realizations of Y map to the same value of WY .

More generally, when sufficient statistics are not available, as in most dynamic mod-

els with general covariate values X, the set D(Y 0, X, θ) still plays a closely analogous

role. Although the linear combinations
∑T

t=1 ktwt that define D can no longer be in-

terpreted as sufficient statistics (since the coefficients kt are not restricted to binary

values), they retain a similar structure and capture aspects of how the model links out-

come histories to the fixed effects. The condition |D| < 2T remains unchanged, but now

serves only as a sufficient condition for the existence of nontrivial moment functions.

In this sense, Theorem 3 extends the logic of sufficiency-based identification to dynamic

settings where no sufficient statistics exist.

4.3 Examples

4.3.1 Panel AR(p) models with general covariates

We first consider the class of AR(p) panel logit models with covariates and scalar fixed

effects. These models are covered by Assumption 3, with the index and fixed effect

specification given by

πt(Y
t−1, Xt, θ) =

p∑
r=1

Yt−r γr +X ′
t β, wt = 1,
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where θ = (γ1, . . . , γp, β
′)′. The initial conditions Y 0 = (Y−p+1, . . . , Y0) ∈ {0, 1}p are

treated as fixed and observed.

To apply Theorem 3, we compute the number of distinct values that the index

πt(Y
t−1, Xt, θ) can take across binary outcome histories. Assuming γr ̸= 0 for all

r ∈ {1, . . . , p}, this number is

Qt = 2min(p, t−1),

since the index depends on the most recent binary p outcomes, or fewer in the initial

periods. Because we are considering wt = 1 for all t, the set D = D(Y 0, X, θ) consists

of all integers between 0 and the maximum sum dmax :=
∑T

t=1Qt. Therefore, we have

|D| = 1 +
T∑
t=1

Qt

= 1 +
T∑
t=1

2min(p, t−1) = 1 +

p∑
t=1

2t−1

︸ ︷︷ ︸
=2p

+2p (T − p)

= 2p(T + 1− p).

By Theorem 3, the number of linearly independent fixed-effect-free moment functions

is therefore at least

2T − 2p(T + 1− p),

which is strictly positive whenever T ≥ 2 + p (in addition to p observed time periods

as initial conditions). It turns out that this is not merely a lower bound: for generic

values of the covariates X, this is in fact the exact number of linearly independent

moment conditions in the AR(p) panel model. However, as we will see in the following

example, additional moment conditions may become available for specific values of X,

in particular when X = 0.

The result for the number of linearly independent moment conditions in the AR(p)

model was stated in Honoré and Weidner (2024), who also derive explicit analytical

expressions for the corresponding moment functions in the cases p = 1, 2, 3, and provide
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a detailed analysis of identification and estimation for p = 1, building on the results of

Kitazawa (2022). The sharpness of the moment count has been established for p = 1

and p = 2 by Kruiniger (2020), and further discussed in Dobronyi, Gu and Kim (2021).

For general p, Dano (2023) proves that the bound is sharp under free-varying covariates

and provides analytical expressions for all the moment functions in closed form.

4.3.2 Panel AR(2) model without covariates

We now consider a special case of the previous example where p = 2 and no covariates

are present. The model takes the form

Pr(Yt = 1 | Yt−1, Yt−2, A) =
exp (Yt−1γ1 + Yt−2γ2 + A)

1 + exp (Yt−1γ1 + Yt−2γ2 + A)
,

which corresponds to the structure in Assumption 3 with

πt(Y
t−1, Xt, θ) = Yt−1γ1 + Yt−2γ2, wt = 1.

In this model for T = 3, one can construct one valid fixed-effect-free moment function

for each value of the inital condition Y 0 = (Y−1, Y0) ∈ {0, 1}2. For instance, when

y0 = (0, 0), the following function satisfies the moment condition (9):

m(y, y0, θ) =



exp(−γ1) if y = (0, 1, 1),

1 if y = (0, 1, 0),

−1 if (y1, y2) = (1, 0),

0 otherwise,
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and when y0 = (0, 1), a valid moment function is given by

m(y, y0, θ) =



exp(γ2 − γ1) if y = (1, 0, 0),

exp(γ2) if y = (1, 0, 1),

−1 if (y1, y2) = (0, 1),

0 otherwise,

see Section 3.3 of the first arXiv version of Honoré and Weidner (2024), who provide

closed-form moment functions for the AR(p) model with T = 3 and X2 = X3.

Firstly, this example shows that the lower bound in Theorem 3 is not always sharp.

For p = 2 and T = 3, we have 2T − |D| = 0, so the theorem does not guarantee the

existence of any fixed-effect-free moment functions. Nevertheless, such functions do

exist, as demonstrated above.

Secondly, the first moment function implies that γ1 is point-identified in this model,

since exp(−γ1) is strictly monotonic in γ1, and thus the moment function is strictly

monotonic as well. Once γ1 is identified, the second moment function then identifies γ2

through the same logic. This result provides analytical confirmation of earlier numerical

findings in Honoré and Kyriazidou (2019) that suggested identification might be possible

in this setup, even though conditional likelihood methods do not apply.

Thus, the moment condition approach point-identifies both γ1 and γ2 in this model

as soon as T ≥ 3. By contrast, as noted in Remark 3.3, the sufficient statistics approach

can identify only γ2, and requires at least T ≥ 4 to do so.

4.3.3 Panel AR(1) with quarterly fixed effects and covariates

Next, consider the extension of Example 3.5 with strictly exogenous covariates. For

this specification, we have πt(Y
t−1, Xt, θ) = Yt−1γ +X ′

tβ and wt = (wt,1, wt,2, wt,3, wt,4)
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where wt,q is an indicator for quarter q ∈ {1, 2, 3, 4}. It follows that

D(Y 0, X, θ) =

{
(k1 +

T∑
t=2

t≡1(mod 4)

kt,
T∑
t=2

t≡2(mod 4)

kt,
T∑
t=2

t≡3(mod 4)

kt,
T∑
t=2

t≡0(mod 4)

kt) :

k1 ∈ {0, 1} and kt ∈ {0, 1, 2} ∀t ≥ 2

}

with cardinality |D(Y 0, X, θ)| =
(
2⌊T−1

4
⌋+ 2

) (
2⌊T−2

4
⌋+ 3

) (
2⌊T−3

4
⌋+ 3

) (
2⌊T

4
⌋+ 1

)
.

Hence, the bound 2T −|D(Y 0, X, θ)| of Theorem 3 becomes positive as soon as T ≥ 12,

ensuring the existence of moments. While informative, this bound is conservative in

this instance since in the absence of regressors (which does not alter the bound here),

Example 3.5 already indicated the existence of identifying moments for T = 6. Indeed,

one can construct two linearly independent moment functions m1 and m2 with T = 6

periods. Using the shorthand xts = xt − xs for t ̸= s, m1 is given by

m1(y, y0, x, θ) =



exp(γ [(1− y0) + 1] + (x51 + x26)
′β) if (y1, y2, y4, y5, y6) = (1, 0, 1, 0, 1)

exp(γ(1− y0) + (x51 + x26)
′β) if (y1, y2, y4, y5, y6) = (1, 0, 0, 0, 1)

exp(γ(1− y0) + x′
51β) if (y1, y2, y4, y5, y6) = (1, 0, 1, 0, 0)

exp(−γy0 + x′
51β) if (y1, y2, y4, y5, y6) = (1, 0, 0, 0, 0)

exp(x′
26β)− 1 if (y1, y2, y5, y6) = (0, 0, 0, 1)

−1 if (y1, y2, y5) = (0, 0, 1)

exp(−γy0 + (x51 + x62)
′β) if (y1, y2, y4, y5, y6) = (1, 1, 1, 0, 0)

exp(−γ(1 + y0) + (x51 + x62)
′β) if (y1, y2, y4, y5, y6) = (1, 1, 0, 0, 0)

exp(γ(1− y0) + x′
51β) if (y1, y2, y4, y5, y6) = (1, 1, 1, 0, 1)

exp(−γy0 + x′
51β) if (y1, y2, y4, y5, y6) = (1, 1, 0, 0, 1)

exp(x′
62β)− 1 if (y1, y2, y5, y6) = (0, 1, 0, 0)

−1 if (y1, y2, y5) = (0, 1, 1)

0 otherwise,
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and m2(y, y0, x, θ) is obtained by substituting yt by (1 − yt) for t = 0, . . . , 6 and x

by −x in the expression of m1(y, y0, x, θ). In other words, m2(y, y0, x, θ) = m1(1 −

y, 1 − y0,−x, θ). We refer readers to Appendix A.2 for detailed derivations of these

expressions. Remark that the two moment functions depend on the common parameter

θ = (γ, β′)′.

4.3.4 Moment conditions in Graham (2016) with additional covariates

As an illustration of how the lower bound of Theorem 3 can be applied to probe the

existence of moment conditions in networks, consider the extension of Graham (2016)

introduced earlier, incorporating strictly exogenous covariates X. In this setting, we

specify πt(Y
t−1, Xt, θ) = Yij,τ−1γ+Rij,τ−1δ+X ′

tβ, where t = (i, j, τ) indexes dyad-time

pairs, and wt denotes the basis vector in R(
n
2) with entry one for dyad (i, j), and zeros

elsewhere. Under this formulation, the model described in Assumption 3 becomes

Pr(Yijτ = 1 | Yij,τ−1, Rij,τ−1, Xt, Aij) =
exp (Yij,τ−1γ +Rij,τ−1δ +X ′

tβ + Aij)

1 + exp (Yij,τ−1γ +Rij,τ−1δ +X ′
tβ + Aij)

Since Rij,τ−1 :=
∑

k ̸=i,j Yik,τ−1Yjk,τ−1, for any fixed covariates X, the structure of πt

implies that it can take at most 2(n− 1) distinct values. Consequently, we have

Qt(Y
0, X, θ) =

1 if τ = 1

2(n− 1) if τ ≥ 2

and hence

D(Y0, X) =

{
T∑
t=1

kt wt, such that ∀t = (i, j, τ),

if τ = 1, kt ∈ {0, 1},

if τ ≥ 2, kt ∈ {0, 1, . . . , 2(n− 1)}

}
.
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A straightforward counting argument then gives |D(Y 0, X, θ)| = [2(T − 1)(n− 1) + 2](
n
2)

and Theorem 3 implies the existence of at least 2T−|D(Y0, X)| = 2T−[2(T − 1)(n− 1) + 2](
n
2)

moment functions free from the fixed effects. Since log |D(Y 0, X, θ)| grows approxi-

mately proportionally to log T - the number of time periods - while log(2T ) = log(2)
(
n
2

)
T

grows linearly in T , the existence of moment conditions is guaranteed for sufficiently

large T . For example, in the simplest case with n = 3 agents, the lower bound is

positive as soon as T ≥ 4. In fact, Dano (2023) shows that there is generally as much

as
(
n
2

)
fixed-effect-free moment conditions with only T = 3 periods that are explicitly

given by:

my(Y, Y
0, X, θ) = 1{Y2 = y} exp

{∑
i<j

(Yij,3 − yij) [γ(Yij,1 − yij) + δ(Rij,1 − rij)− (Xij,3 −Xij,2)
′β]

}

× exp

{
−
∑
i<j

(Yij,1 − yij) [γ(Yij,0 − yij) + δ(Rij,0 − rij)− (Xij,3 −Xij,1)
′β]

}

− 1{Y1 = y}

where y denotes an undirected network, and rij :=
∑

k ̸=i,j yikyjk denotes the number of

friends that agents i and j share in common in y.

4.4 Main Takeaways

• The moment function approach developed in this section — also known as func-

tional differencing, following Bonhomme (2012) — provides a powerful alternative

to the conditional likelihood strategy based on sufficient statistics. In particular,

the examples above show that fixed-effect-free moment conditions exist even in

dynamic models with arbitrary covariate variation, where sufficient statistics ap-

proaches typically fail. This includes models with general time-varying covariates,

heterogeneous time trends, and rich dynamic structures.

• Theorem 3 offers a general and easy-to-verify sufficient condition for the existence

of such fixed-effect-free moment functions. While the lower bound it provides is
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not always sharp, it guarantees the existence of moment conditions for sufficiently

large T in a broad class of models. For example, in the AR(2) model without

covariates, the theorem does not predict the existence of moments at T = 3, but

still confirms their existence for T ≥ 4.

• Even when moment conditions are known to exist, their explicit construction and

the demonstration that they identify the parameters of interest typically require

model-specific derivations. In some models, analytical expressions can be derived,

while in others, numerical methods, as in Bonhomme (2012), may be required.

• Unlike the sufficiency-based approach, which relies on conditional likelihood and is

typically estimated via conditional MLE, the moment-based approach leads nat-

urally to GMM estimation. Once a sufficient number of valid moment conditions

are constructed, and the model parameters are identified, standard GMM theory

yields root-n consistent and asymptotically normal estimators under appropriate

regularity conditions.

5 Conclusions

This paper has reviewed and extended two approaches for eliminating fixed effects

in logit models: the conditional likelihood method and the construction of moment

conditions. While the results are conceptually clean and methodologically promising,

several important challenges remain, pointing to avenues for future research.

First, the moment-based framework often yields a large number of conditional mo-

ment conditions, linking it to the broader literature on optimal moment selection in

panel data. Prior work, including Bekker (1994), Donald and Newey (2001), Alvarez

and Arellano (2003), and Okui (2009), has shown that using too many valid moments

can introduce substantial finite-sample bias. This suggests that future research on non-

linear models should integrate identification strategies with principled approaches to

moment selection.
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Second, our focus has been on identifying and estimating structural parameters,

rather than computing counterfactuals or marginal effects. In panel data settings,

these quantities are typically not point-identified, even when the structural parameters

are. Extending the methods discussed here to incorporate bounds on marginal effects,

such as those proposed by Pakel and Weidner (2024) and Davezies, D’Haultfœuille and

Laage (2024), would enhance the empirical relevance of the fixed effects framework.

Finally, and perhaps most critically, the models considered here assume strict exo-

geneity of the explanatory variables (aside from lagged outcomes). This assumption is

often unrealistic in economic applications. While recent work by Arellano and Carrasco

(2003), Botosaru, Loh and Muris (2024), Bonhomme, Dano and Graham (2023), and

Bonhomme, Dano and Graham (2025) has made progress in relaxing this assumption,

much remains to be done to develop robust methods that accommodate predetermined

regressors in nonlinear panel models.
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Honoré, B. E. (1992). Trimmed lad and least squares estimation of truncated and

censored regression models with fixed effects. Econometrica 60, 533–565.
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A Proofs

Proof of Lemma 1. Assume first that there exist y1, y2 satisfying the assumptions

in the lemma. In that case w⊥ = y1 − y2 satisfies w⊥ ∈ {−1, 0, 1}T and Ww⊥ = 0. We

have thus shown the “only if direction” of the lemma.

Conversely, let w⊥ ∈ {−1, 0, 1}T be such that w⊥ ̸= 0 and Ww⊥ = 0. Define y1 and

y2 to be the T -vectors with components y1t = 1(w⊥,t = 1) and y2t = 1(w⊥,t = −1),

for t ∈ {1, . . . , T}. Since w⊥ ̸= 0 we have y1 ̸= y2. Since the definition of y1 and y2

implies w⊥ = y1 − y2, and Ww⊥ = 0, we have Wy1 = Wy2. We have thus shown the “if

direction” of the lemma.

Remark A.1 Notice that in the last paragraph of the proof, the choice of y1 and y2

was somewhat arbitrary: For t ∈ {1, . . . , T} with w⊥,t = 0 we chose y1t = y2t = 0, but

46



y1t = y2t (equal to zero or one) would have been sufficient to deliver the desired result.

In other words, w⊥,t generally does not determine y1 and y2 uniquely. However, purely

from an identification perspective (completely ignoring finite sample properties), having

multiple pairs y1, y2 corresponding to the same w⊥,t is actually not useful, because all

those pairs identify the same parameter component β′Xw⊥,t. In that sense, from an

identification perspective, the w⊥ can be viewed as more fundamental objects than the

pairs y1, y2.

Proof of Theorem 1. Let w⊥ ∈ {−1, 0, 1}T be a column of W⊥, and let y1, y2 ∈

{0, 1}T be a corresponding outcome pair as guaranteed by Lemma 1. By construction,

we have w⊥ = y1 − y2. Then, using equation (2), we obtain

log

(
1[

Pr
(
Y = y1

∣∣X, Y ∈ {y1, y2}
)]−1 − 1

)
= β′Xw⊥,

which shows that β′Xw⊥ is identified from the data. Since this holds for every column of

W⊥, it follows that the vector z(X) := β′XW⊥ is point-identified from the distribution

of the data.

Now suppose, contrary to identification, that there exists an alternative parameter

vector β̃ ̸= β such that all assumptions of the theorem are satisfied. Then by the same

logic, we must also have z(X) = β̃′XW⊥, which implies

(β − β̃)′XW⊥ = 0 a.s.

Let b := β− β̃. Then the above equation reads b′XW⊥ = 0 almost surely, contradicting

the non-collinearity condition assumed in the theorem. Therefore, no such β̃ ̸= β can

exist, and β is identified.

Proof of Lemma 2. Write πt for πt(y
t−1, θ), and π̃t for πt(ỹ

t−1, θ). By assumption

(i) of the lemma, the likelihood ratio simplifies to:

Pr(Y = y|Y 0 = y0, A)

Pr(Y = ỹ|Y 0 = y0, A)
= exp

{
T∑
t=1

[
yt πt(y

t−1, θ)− ỹt πt(ỹ
t−1, θ)

]} T∏
t=2

1 + exp(π̃t + w′
tA)

1 + exp(πt + w′
tA)

.
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Under assumption (ii) of the lemma, all the terms in the last product cancel pairwise

due to the permutation condition, that is,

T∏
t=2

1 + exp(π̃t + w′
tA)

1 + exp(πt + w′
tA)

= 1.

Combining the last two displays gives the desired result.

Proof of Theorem 2. The theorem is almost an immediate corollary of Lemma 2.

The only subtlety is that for part (i) of the theorem, we need to show that assumption

(ii) of Lemma 2 holds for this model, that is, that
[(
wt, yt−1

)
: t = 2, . . . , T

]
is a

permutation of
[(
wt, ỹt−1

)
: t = 2, . . . , T

]
. To establish this, note that the sufficient

statistic (WY,WYlag) provides us with the constraints:

T∑
t=1

wtyt =
T∑
t=1

wtỹt, (10)

T∑
t=1

wtyt−1 =
T∑
t=1

wtỹt−1. (11)

The key insight is that each wt is a standard basis vector in Rdw due to the restrictions

in (6). Specifically, we can write wt = ejt where jt ∈ {1, . . . , dw} and ej is the j-th

standard basis vector. Under this representation, constraints (10) and (11) become:

For each j ∈ {1, . . . , dw} :
∑
t:jt=j

yt =
∑
t:jt=j

ỹt, (12)

For each j ∈ {1, . . . , dw} :
∑
t:jt=j

yt−1 =
∑
t:jt=j

ỹt−1. (13)

Since yt, ỹt ∈ {0, 1}, constraints (12) and (13) imply that for each group of time periods

with the same wt value (i.e., for each j ∈ {1, . . . , dw}):

• The number of ones in {yt : t ∈ {1, . . . , T}, jt = j} equals the number of ones in

{ỹt : t ∈ {1, . . . , T}, jt = j}.

• The number of ones in {yt−1 : t ∈ {2, . . . , T}, jt = j} equals the number of ones
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in {ỹt−1 : t ∈ {2, . . . , T}, jt = j}.

This means that within each group defined by wt = ej, the binary values can be

rearranged such that the pairs (wt, yt−1) from the y sequence match the pairs (wt, ỹt−1)

from the ỹ sequence in terms of their frequency distribution.

Since this matching property holds for each group separately, and the groups parti-

tion the index set {2, . . . , T}, we conclude that the sequences
[(
wt, yt−1

)
: t = 2, . . . , T

]
and

[(
wt, ỹt−1

)
: t = 2, . . . , T

]
are permutations of each other.

Therefore, condition (ii) from Lemma 2 is satisfied. Combined with the fact that

condition (i) of the lemma follows directly from constraint (10), we can apply the lemma

to establish that the distribution ratio does not depend on A, which proves part (i) of

the theorem.

Part (ii) follows immediately from the identification condition in the lemma and the

specific form πt(y
t−1, θ) = yt−1γ in the AR(1) model.

Proof of Theorem 3. We drop most arguments Y0, X throughout this proof.

We also use yt−1 simply to denote the vector (yt−1, yt−2, . . . , y1) (i.e. dropping Y 0).

Define at := exp(w′
t A) and bt,q := exp(πt,q), where πt,q denotes the elements of Πt, with

q ∈ {1, . . . , Qt}. Also, let q(yt−1) be such that bt,q(yt−1) = exp(πt(y
t−1)). Then,

Pr
(
Y = y

∣∣Y 0, X,A
)
=

T∏
t=1

(
bt,q(yt−1) at

)yt
1 + bt,q(yt−1) at

=

[
T∏
t=1

Qt∏
q=1

1

1 + bt,q at

]
︸ ︷︷ ︸

=:κ(a)

T∏
t=1

(bt,q(yt−1))
yt(at)

yt
∏

q∈{1,...,Qt}\q(yt−1)

(1 + bt,q at)︸ ︷︷ ︸
=:ϕt(y,at)

= κ(a)
T∏
t=1

ϕt(y, at)︸ ︷︷ ︸
=:ϕ(y,A)

,

where for each t the corresponding

ϕt(y, at) =

Qt∑
k=0

ct,k(y)a
k
t
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is a polynomial in at with Qt + 1 powers between a0t and aQt
t . Using this we find that

ϕ(y, A) =
∑
d∈D

c̃d(y) exp(d
′A)

Therefore, a moment function satisfies (9) for all A if it is orthogonal (in the 2T dimen-

sional outcome space) to all c̃d vectors, which is one linear condition on the moment

function for every d ∈ D. The number of solutions is therefore at least 2T − |D|.

A.1 Sufficient statistics for AR(p) models with p > 1

Consider

Pr
(
Y = y

∣∣Y 0 = y0, A
)

=
T∏
t=1

[
1

1 + exp (
∑p

r=1 yt−r γr + w′
tA)

]1−yt [ exp (
∑p

r=1 yt−r γr + w′
tA)

1 + exp (
∑p

r=1 yt−r γr + w′
t A)

]yt
. (14)

which extends (7) to an autoregressive model of arbitrary order p > 1. Let y, ỹ ∈ {0, 1}T

denote two outcome paths. In this model, conditions (i) and (ii) of Lemma 2 correspond

to

(i)
∑T

t=1wtyt =
∑T

t=1wtỹt.

(ii)
[(
wt,
∑p

r=1 yt−r γr
)
: t = 2, . . . , T

]
is a permutation of

[(
wt,
∑p

r=1 yt−r γr
)
: t =

2, . . . , T
]

Let Cl,p denote the set of all combinations of l-elements i = (i1, . . . , il) drawn from

{1, . . . , p}. A key observation is that condition (ii) means that y, ỹT produce the same

proportions of pairs
{(

wt,
∑l

j=1 γij

)}
i∈Cl,p

for l = 1, . . . , p, t = 2, . . . , T . In view of

(14), this can only be the case if for each i ∈ Cl,p and associated pair
(
wt,
∑l

j=1 γij

)
,

we have

T∑
t=2

wt

l∏
j=1

yt−ij

p∏
k=1

k/∈{i1,...,il}

(1− yt−k) =
T∑
t=2

wt

l∏
j=1

ỹt−ij

p∏
k=1

k/∈{i1,...,il}

(1− ỹt−k)

50



These conditions are collectively equivalent to

T∑
t=2

wt

l∏
j=1

yt−ij =
T∑
t=2

wt

l∏
j=1

ỹt−ij , ∀i ∈ Cl,p, l = 1, . . . , p (15)

Lemma 2 ensures that if (i) and (15) are satisfied, the likelihood ratio Pr(Y=y|Y 0=y0,A)
Pr(Y=ỹ|Y 0=y0,A)

is free from A. For the special case p = 2, we have C1,2 = {(1), (2)} and C2,2 = {(1, 2)}

and (15) reduces to

T∑
t=1

wt yt−1 =
T∑
t=1

wt ỹt−1

T∑
t=1

wt yt−2 =
T∑
t=1

wt ỹt−2

T∑
t=1

wt yt−1 yt−2 =
T∑
t=1

wt ỹt−1 ỹt−2.

Together with (i), these restrictions coincide with (8) from the main text.

To understand why the conditional likelihood approach fails to identify γ1 in the

AR(2), recall that each weight vector wt = (wt,1, . . . , wt,dw) satisfies wt,k ∈ {0, 1}, for

all k ∈ {1, . . . , dw}, and
∑dw

k=1wt,k = 1. This structure implies that the conditions in

(8) yield the following equalities: (a)
∑T

t=1 yt =
∑T

t=1 ỹt (b)
∑T

t=1 yt−1 =
∑T

t=1 ỹt−1,

(c)
∑T

t=1 yt−2 =
∑T

t=1 ỹt−2 and (d)
∑T

t=1 yt−1 yt−2 =
∑T

t=1 ỹt−1 ỹt−2. Furthermore,

since the initial condition y0 = (y0, y−1) ∈ {0, 1}2 is held fixed across y, ỹ, we have (b)∑T−1
t=1 yt =

∑T−1
t=1 ỹt, (c)

∑T−2
t=1 yt =

∑T−2
t=1 ỹt and (d)

∑T−1
t=1 yt yt−1 =

∑T−1
t=1 ỹt ỹt−1.

From (b) and (c), we deduce that yT−1 = ỹT−1; then from (a) it follows that yT = ỹT .

Using these equalities in (d), we find:
∑T

t=1 yt yt−1 =
∑T

t=1 ỹt ỹt−1. This last condition

implies that the likelihood ratio given in Lemma 2 simplifies to

Pr(Y = y|Y 0 = y0, A)

Pr(Y = ỹ|Y 0 = y0, A)
= exp

{
γ2

T∑
t=1

[ytyt−2 − ỹtỹt−2]

}
,
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which is independent of γ1. For the general AR(p) case, one can extend this reason-

ing to show that the conditional likelihood approach fails to identify the first (p − 1)

autoregressive coefficients γ1, . . . , γp−1 under conditions (i) and (15).

A.2 Moment functions for the panel AR(1) with quarterly

fixed effects and covariates

The moment function m1 presented in the main text in a very explicit form is the sum

of 9 subcomponents:

m1(Y, Y0, X, θ) =
∑

y∈{0,1}2
φ(a)
y (Y, Y0, X, θ) + φ(b)

y (Y, Y0, X, θ)− (1− Y1)

where for y = (y3, y4) ∈ {0, 1}2,

φ(a)
y (Y, Y0, X, θ) = ϕ(a)

y (Y, Y0, X, θ)− wy(Y0, X)Y1ϕ
(a)
y (Y, Y0, X, θ)

ϕ(a)
y (Y, Y0, X, θ) = (1− Y2)1{Y3 = y3, Y4 = y4}(1− Y5)e

Y6(γY1+X′
26β)

φ(b)
y (Y, Y0, X, θ) = ϕ(b)

y (Y, Y0, X, θ)− wy(Y0, X)Y1ϕ
(b)
y (Y, Y0, X, θ)

ϕ(b)
y (Y, Y0, X, θ) = Y21{Y3 = y3, Y4 = y4}(1− Y5)e

(1−Y6)(−γY1+X′
62β)

with wy(Y0, X) = 1 − e−γY0+γy4+X′
51β and using the shorthand Xts = Xt − Xs. The

blueprint behind this construction is the following. For any y = (y3, y4), it follows from

the definition of ϕ
(a)
y (Y, Y0, X, θ) that

E
[
ϕ(a)
y (Y, Y0, X, θ)|Y0, Y1, X,A

]
=

1

1 + eγY1+X′
2β+A2

ey3(X
′
3β+A3)

1 + eX
′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

1

1 + eγy4+X′
5β+A1(

1

1 + eX
′
6β+A2

+ eγY1+X′
26β

eX
′
6β+A2

1 + eX
′
6β+A2

)
=

ey3(X
′
3β+A3)

1 + eX
′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

1

1 + eγy4+X′
5β+A1

1

1 + eX
′
6β+A2
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Therefore, by the law of iterated expectations

E
[
φ(a)
y (Y, Y0, X, θ)|Y0, X,A

]
= E

[
ϕ(a)
y (Y, Y0, X, θ)− wy(Y0, X)Y1ϕ

(a)
y (Y, Y0, X, θ)|Y0, X,A

]
= E

[
E
[
ϕ(a)
y (Y, Y0, X, θ)|Y0, Y1, X,A

]
|Y0, X,A

]
− wy(Y0, X)E

[
Y1E

[
ϕ(a)
y (Y, Y0, X, θ)|Y0, Y1, X,A

]
|Y0, X,A

]
=

ey3(X
′
3β+A3)

1 + eX
′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

1

1 + eγy4+X′
5β+A1

1

1 + eX
′
6β+A2

−
(
1− e−γY0+γy4+X′

51β
) eγY0+X′

1β+A1

1 + eγY0+X′
1β+A1

ey3(X
′
3β+A3)

1 + eX
′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

1

1 + eγy4+X′
5β+A1

1

1 + eX
′
6β+A2

=

(
1

1 + eγy4+X′
5β+A1

−
(
1− e−γY0+γy4+X′

51β
) eγY0+X′

1β+A1

1 + eγY0+X′
1β+A1

1

1 + eγy4+X′
5β+A1

)
× ey3(X

′
3β+A3)

1 + eX
′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

1

1 + eX
′
6β+A2

=
1

1 + eγY0+X′
1β+A1

ey3(X
′
3β+A3)

1 + eX
′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

1

1 + eX
′
6β+A2

where the last equality exploits the partial fraction decomposition identity (c.f Lemma

6 in Dano (2023))

1

1 + ev+a
+ (1− eu−v)

ev+a

(1 + ev+a)(1 + eu+a)
=

1

1 + eu+a

Now, by summing over all possible combinations of y = (y3, y4), we obtain:

E

 ∑
y∈{0,1}2

φ(a)
y (Y, Y0, X, θ)|Y0, X,A

 =
1

1 + eγY0+X′
1β+A1

1

1 + eX
′
6β+A2

(16)

Next, applying the same reasoning to ϕ
(b)
y (Y, Y0, X, θ) and φ

(b)
y (Y, Y0, X, θ), we get

E
[
ϕ(b)
y (Y, Y0, X, θ)|Y0, Y1, X,A

]
=

ey3(γ+X′
3β+A3)

1 + eγ+X′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

1

1 + eγy4+X′
5β+A1

eX
′
6β+A2

1 + eX
′
6β+A2

53



and

E
[
φ(b)
y (Y, Y0, X, θ)|Y0, X,A

]
=

1

1 + eγY0+X′
1β+A1

ey3(γ+X′
3β+A3)

1 + eγ+X′
3β+A3

ey4(γy3+X′
4β+A4)

1 + eγy3+X′
4β+A4

eX
′
6β+A2

1 + eX
′
6β+A2

implying in turn that

E

 ∑
y∈{0,1}2

φ(b)
y (Y, Y0, X, θ)|Y0, X,A

 =
1

1 + eγY0+X′
1β+A1

eX
′
6β+A2

1 + eX
′
6β+A2

(17)

Adding up (16) and (17) finally yields

E

 ∑
y∈{0,1}2

φ(a)
y (Y, Y0, X, θ) + φ(b)

y (Y, Y0, X, θ)|Y0, X,A

 =
1

1 + eγY0+X′
1β+A1

= E [(1− Y1)|Y0, X,A]

whereupon E [m1(Y, Y0, X, θ)|Y0, X,A] = 0. To see that m2(Y, Y0, X, θ) = m1(1 −

Y,−X; θ) is also a valid moment function, it suffices to note that the model probabilities

Pr
(
Y = y

∣∣Y 0, X,A
)
of the AR(1) model with quaterly fixed effects are invariant under

the symmetry transformation:

Yt ↔ 1− Yt, Xt ↔ −Xt, θ ↔ θ, Ak ↔ −Ak − γ ∀k ∈ {1, . . . , 4}

This implies that

E [m2(Y, Y0, X, θ)|Y0 = y0, X = x,A = a] = E [m1(1− Y,−x; θ)|Y0 = y0, X = x,A = a]

= E [m1(Y, Y0, X, θ)|Y0 = 1− y0, X = −x,A = −a− γ]

= 0
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