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Abstract

Many panel data methods, while allowing for general dependence between covariates and
time-invariant agent-specific heterogeneity, place strong a priori restrictions on feedback : how
past outcomes, covariates, and heterogeneity map into future covariate levels. Ruling out feed-
back entirely, as often occurs in practice, is unattractive in many dynamic economic settings.
We provide a general characterization of all feedback and heterogeneity robust (FHR) moment
conditions for nonlinear panel data models and present constructive methods to derive feasi-
ble moment-based estimators for specific models. We also use our moment characterization to
compute semiparametric efficiency bounds, allowing for a quantification of the information loss
associated with accommodating feedback, as well as providing insight into how to construct
estimators with good efficiency properties in practice. Our results apply both to the finite di-
mensional parameter indexing the parametric part of the model as well as to estimands that
involve averages over the distribution of unobserved heterogeneity. We illustrate our methods
by providing a complete characterization of all FHR moment functions in the multi-spell mixed
proportional hazards model. We compute efficient moment functions for both model parameters
and average effects in this setting.
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We thank Manuel Arellano, Bo Honoré, Whitney Newey, Aureo de Paula, Martin Weidner, and seminar
participants at various places for comments. All the usual disclaimers apply. Portions of the research reported
were undertaken while Bonhomme and Graham were visiting CEMFI in the Fall of 2022 with support from
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An econometrican randomly samples units from a population of interest. For each sampled

unit i = 1, . . . , N , let Yit denote a period t = 1, . . . , T outcome, Xit a corresponding vector

of covariates, and Ai, a latent variable representing unmeasured unit-specific attributes.

Importantly, Ai is constant over time and may freely covary with the regressors, Xi1, . . . , XiT .

An initial condition, Yi0, is also observed. Panel data of this type feature prominently in

empirical research in economics and other fields. That panel data offers the possibility to

“control for” the correlated heterogeneity, Ai, is a key attraction.

While “fixed effects” panel data methods place no restrictions (beyond mild regularity

conditions) on the joint distribution of the initial condition Yi0 and latent heterogeneity Ai,

they generally do place strong restrictions on how the outcomes Yi1, . . . , YiT and regressors

Xi1, . . . , XiT relate to each other. These restrictions involve more than substantive modeling

assumptions; they also constrain what we will call the feedback process, whereby past out-

comes and covariates Yit−1, Yit−2, . . . , Yi0, Xit−1, Xit−2, . . . , Xi1, as well as heterogeneity Ai,

influence current covariates Xit.

Feedback arises naturally in many dynamic economic problems. For example, a firm’s

optimal investment rule typically varies with its current capital stock (and hence past in-

vestment decisions) as well as past productivity shocks (and hence its output history), see,

e.g., Olley and Pakes (1996) and Blundell and Bond (2000). A doctor may adjust a patient’s

treatment protocol in a way which depends on her perceptions of their health response to

past treatments (e.g., Robins, 1986). A worker’s decision to participate in job training may,

as is typically the focus in evaluation studies, influence their future labor market outcomes,

but participation may also depend on their past labor market experiences (e.g., Ashenfelter,

1978; Ashenfelter and Card, 1985).

One approach to handling feedback, indeed the leading one in empirical work, rules it

out a priori. This corresponds to maintaining the strict exogeneity assumption formulated

by Chamberlain (1982a,b). Strict exogeneity assumptions underpin, albeit generally implic-

itly, many panel data based approaches to program evaluation (see Ghanem et al., 2022

on difference-in-differences methods). The overwhelming majority of nonlinear panel data

estimators also require strict exogeneity (see Arellano and Honoré, 2001; Arellano and Bon-

homme, 2011). Strict exogeneity, while a convenient assumption for estimation, is restrictive

in many economic applications. Ironically, although Chamberlain (1982b, 1984) emphasized

the testable implications of strict exogeneity, today the assumption is so common as to often

go unmentioned in applied work.

A different approach, pioneered by Robins (1986), assumes that the feedback pro-

cess is homogeneous. By homogeneous we mean that the mapping from past outcomes,

Yit−1, Yit−2, . . . , Yi0 and covariates Xit−1, Xit−2, . . . , Xi1 to the current covariate, Xit, does not
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vary with Ai: it is identical across agents. This is a powerful simplification, leading to feasible

nonparametric and semiparametric estimators (e.g., Robins, 2000). However, the restriction

to homogeneous feedback, like strict exogeneity, is a strong assumption. It rules out, for

example, a firm’s investment rule varying with its persistent productivity level. Robin’s

(1986) setup is often plausible in environments where the researcher controls Xit, such as in

a dynamic experiment. Strict exogeneity and homogeneous feedback are non-nested assump-

tions; but both restrictions correspond to a subset of the set of the data generating processes

covered by our results.

In this paper we study nonlinear panel data models with unrestricted heterogeneous

feedback and correlated heterogeneity. Almost 25 years ago, surveying the then extant work

on nonlinear panel data analysis, Arellano and Honoré (2001, p. 3265) observed:

The main limitation of much of the literature on nonlinear panel data methods

is that it is assumed that the explanatory variables are strictly exogenous in

the sense that some assumptions will be made on the errors conditional on all

(including future) values of the explanatory variables.

Arellano and Honoré’s (2001) observation remains largely true today. Chamberlain (2022),

in a paper first circulated in the early 1990s, studied a class of panel data models with multi-

plicative heterogeneity defined by sequential moment restrictions. Certain panel data count

models are covered by his results (see Chamberlain, 1992; Wooldridge, 1997; Blundell et al.,

2002; Windmeijer, 2008). Feedback in dynamic linear panel data models with sequential

moment restrictions is also well understood (e.g., Arellano and Bond, 1991; Arellano and

Bover, 1995; Chamberlain, 1992; Hahn, 1997; Ai and Chen, 2012). However, outside the

setting studied by Chamberlain (2022) that includes linear models as a special case, very

little is known about panel data models with unrestricted feedback.1

We characterize the set of feedback and heterogeneity robust (FHR) moment conditions

in nonlinear panel data models with feedback. We work in a likelihood setting where the

outcome density depends on a finite-dimensional parameter, and both the feedback process

and the unobserved heterogeneity distribution are unrestricted. Our results cover both the

finite-dimensional parameter indexing the parametric part of the model, as well as estimands

which involve averages over the distribution of unobserved heterogeneity and feedback (e.g.,

average partial effects, average treatment effects and other average effects). We also charac-

terize semiparametric efficiency bounds for the common parameter and average effects. We

1Buchinsky et al. (2010) show how to compute semiparametric efficiency bounds in dynamic discrete
choice models that feature feedback. Recently, in independent work, Botosaru et al. (2024) and Chesher
et al. (2024) propose innovative approaches to static and dynamic nonlinear panel data models.
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demonstrate how these results may be used to find feasible estimating equations with good

efficiency properties in practice.

To illustrate the power of our approach, we include a complete characterization of all FHR

moments in the multi-spell mixed proportional hazards (MPH) model with both feedback

and lagged duration dependence. Heckman and Borjas (1980) emphasized the importance of

incorporating these phenomena into duration analysis, although we are not aware of methods

for doing so beyond those appearing in the unpublished dissertation of Woutersen (2000).

Hahn (1994) studied efficiency bounds in the multi-spell MPH model under strict exogeneity

and no lagged duration dependence (see also Ridder and Woutersen, 2003 for related work

on estimation of MPH models).

In the next section we formally define the class of semiparametric, nonlinear panel data

models with feedback. Section 2 presents our first main result: a complete characterization

of the set of all feedback and heterogeneity robust (FHR) moment conditions. This extends

the characterization obtained by functional differencing (Bonhomme, 2012), which requires

strict exogeneity, to models with unrestricted feedback. Section 3 provides a similar charac-

terization for average effects. Section 4 presents the semiparametric efficiency bound analysis.

There we demonstrate that the orthogonal complement of the nuisance tangent set coincides

with the set of all FHR estimating equations. This result has important implications for

efficient estimation. Specifically, we show how to construct FHR moment functions that

have good efficiency properties, leading to locally efficient estimators in the sense of Newey

(1990). Throughout we use the MPH model to illustrate key results in a concrete setting.

Our MPH results are novel and of independent interest. Finally, in Section 6, we touch on a

number of important additional issues, including existence of FHR moments, regularization,

and additional novel examples.

Notation. In what follows we generally suppress the i subscript when referring to a single

random draw from the cross-sectional population. Hence, for example, Yt denotes the period

t outcome of a randomly sampled unit and A its unobserved, time-invariant, attribute. We

let Zt = (Zt, Zt−1, . . .) denote the entire observed history of Zt and Zs:t = (Zs, . . . , Zt) its

history from periods s ≤ t to t.

1 Panel data models with feedback

In this section we introduce the semiparametric panel data model with feedback, connect this

model to the more restrictive one which maintains strict exogeneity, and formally state our

main research questions. Throughout this section, and those that follow, we illustrate key
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results in the context of a multi-spell mixed proportional hazards (MPH) model with lagged

duration dependence and feedback.

1.1 Setup

Let {(Xi1, . . . , XiT , Yi0, Yi1, . . . , YiT , Ai)}∞i=1 be an independently and identically distributed

random sequence drawn from some distribution function F . The sole prior restriction on F

is that the conditional density of Yt at yt given the past yt−1, regressor history xt, and latent

unit-specific heterogeneity a, belongs to a known parametric family indexed by the unknown

parameter θ ∈ Θ ⊂ RK :

f
(
yt| yt−1, xt, a

)
= fθ

(
yt| yt−1, xt, a

)
= fθ (yt| yt−1, xt, a) , t = 1, . . . , T, (1)

for some θ ∈ Θ. The density fθ (yt| yt−1, xt, a) is the parametric component of our setup.2

Familiar nonlinear examples of (1) include binary choice logit models (Chamberlain, 1980,

2010; Bonhomme et al., 2023; Honoré and Weidner, 2024) and count models (Chamberlain,

1992, 2022; Wooldridge, 1997). Specific forms for fθ (yt| yt−1, xt, a) also arise in the context of

dynamic structural models (e.g., Aguirregabiria and Mira, 2010). Observe that the paramet-

ric families, fθ (yt| yt−1, xt, a) and fθ (ys| ys−1, xs, a) need not coincide for s ̸= t; this allows

for time effects and other forms of nonstationarity.

Example 1. (Mixed Proportional Hazards (MPH) Model) Let {Yt}Tt=1 denote a

sequence of durations, or spell lengths, with Xt a corresponding vector of beginning-of-

spell covariates; Y0 is an “initial duration”. For example, Yt might equal time to re-arrest

following an agent’s tth release from prison while Xt might include measures of their post-

release support and supervision. Since support and supervision, Xt, might depend on the

previous time to re-arrest, Yt−1, as well as unmeasured agent attributes, A, heterogeneous

feedback is plausible.

The MPH model was introduced by Lancaster (1979) and Nickell (1980) for single-spell

data. Chamberlain (1985) studied identification and estimation with multi-spell data un-

der strict exogeneity. Hahn (1994) derived the semiparametric efficiency bound for both

the single- and multi-spell case (the latter under strict exogeneity). Heckman and Borjas

(1980) emphasize the relevance of lagged duration dependence and feedback in labor market

applications.

2While (1) imposes that only the contemporaneous regressor and the first lag of the outcome matter,
additional lags could be easily accommodated in what follows.
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The instantaneous conditional hazard rate is given by

λ
(
yt|Y t−1 = yt−1, X t = xt, A = a

)
= λα (yt) exp (γyt−1 + x′tβ + a) , (2)

with λα (yt) a known parametric family of baseline hazard functions indexed by α (we em-

phasize the Weibull case with λα (yt) = αyα−1
t below). Under (2) the conditional density at

Yt = yt is

fθ
(
yt| yt−1, xt, a

)
= λα (yt) exp (γyt−1 + x′tβ + a) exp (−ρθ (zt) ea) , (3)

for zt = (yt, yt−1, x
′
t)

′, ρθ (zt) = Λα (yt) exp (γyt−1 + x′tβ), θ = (α′, β′, γ)′, and Λα (yt) =∫ yt
0
λα (u) du the integrated baseline hazard.

Example 2. (Poisson Model) Let {Yt}Tt=1 denote a sequence of counts, for example the

number of patents awarded to a firm in a year, as in Blundell et al. (2002), and Xt a vector

of time-varying regressors. For t = 1, . . . , T we have

Yt|Y t−1, X t, A ∼ Poisson (exp (γYt−1 +X ′
tβ + A)) , (4)

with Y0 an initial count. Chamberlain (1992) and Wooldridge (1997) proposed GMM esti-

mators for θ = (β′, γ)′ in this model. Windmeijer (2008) reviews extant results.

Returning to our general setup, sequentially factorizing the joint density of

Y0, Y1, . . . , YT , X1, . . . , XT , A at y0, y1, . . . , yT , x1, . . . , xT , a yields the following expression for

the likelihood contribution of a single unit:

ℓ
(
θ, g, π, ν| yT , xT

)
=

[
T∏
t=2

f
(
xt, yt|xt−1, yt−1, a

)]
f (y1| y0, x1, a) f (a| y0, x1) f (y0, x1)

=

 T∏
t=1

fθ (yt| yt−1, xt, a)︸ ︷︷ ︸
Parametric component

×

 T∏
t=2

g
(
xt| yt−1, xt−1, a

)︸ ︷︷ ︸
Feedback process


× π (a| y0, x1)︸ ︷︷ ︸

Heterogeneity

× ν (y0, x1)︸ ︷︷ ︸
Initial condition

, (5)

where the second equality follows by imposing the parametric assumption (1) and establishing

the following notations:

(i) g (xt| yt−1, xt−1, a), denotes the density of Xt at xt given the past (yt−1, xt−1) and het-

erogeneity a;
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(ii) π (a| y0, x1), the conditional density of A at a given the initial condition (y0, x1); and

(iii) ν (y0, x1), the initial condition density.

While fθ (yt| yt−1, xt, a) belongs to a parametric family, the remaining components, items (i)

to (iii) above, are all unrestricted. We call this model the semiparametric panel data model

with feedback.

In what follows we call the T−1 densities g
(
xT | yT−1, xT−1, a

)
, g
(
xT−1| yT−2, xT−2, a

)
, ...,

g (x2| y1, x1, a) the feedback process. This process describes how past values of the outcome

influence current regressor values. Because it depends on A, the feedback process is heteroge-

nous across units. We do not impose any stationarity over t = 1, . . . , T , so g (xt| yt−1, xt−1, a)

and g (xs| ys−1, xs−1, a) for s ̸= t may differ arbitrarily. When Xt is a policy variable, such

flexibility accommodates un-modeled regime shifts (e.g., as when a change in tax policy alters

firm investment behavior). We use the notation g to denote a generic element of the set of

all allowable feedback processes G. We call π (a| y0, x1) the heterogeneity distribution; this

density describes the distribution of unobserved heterogeneity, A, across units as well as any

dependence of this heterogeneity on the initial condition, (y0, x1). Let π denote a generic

element of the set of all allowable heterogeneity distributions, Π. Finally we let ν ∈ N denote

an element of the set of all possible initial condition densities.

Although not emphasized in our exposition, it is straightforward to incorporate strictly

exogenous regressors into the feedback model. Similarly, additional sources of heterogene-

ity, beyond A, can enter the feedback process. This generality, while important in some

applications, involves no new issues and clutters notation.3 We also note that, although not

emphasized in most of our examples, Yt may be vector-valued in some settings.

Panel data models with feedback and heterogeneity arise frequently in economic applica-

tions. In structural dynamic choice models, agents’ dynamic optimization typically leads to

a likelihood function of the form (5), where Yt contains choice variables of interest, as well as

payoff variables, and Xt contains dynamic state variables and un-modeled choice variables;

see Aguirregabiria and Mira (2010) for an exposition in the case of models with discrete out-

3To be specific: let WT contain all leads and lags of a vector of strictly exogeneous regressors and B an
additional source of heterogeneity. The results that follow are easily modified to accommodate the richer
model:

ℓ
(
θ, g, π, ν| yT , xT , wT

)
=

{∫ ∫ T∏
t=1

fθ (yt| yt−1, xt, wt, a)×

[
T∏

t=2

g
(
xt| yt−1, xt−1, wT , a, b

)]

× π
(
a, b| y0, x1, wT

)
dadb

}
× ν

(
y0, x1, w

T
)
,

where we assume that only the contemporaneous value of Wt enters the parametric part of the model for
simplicity.
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comes. The moment conditions we derive are robust to any possible process for the dynamic

state variables and distribution of unobserved heterogeneity.

Feedback also arises in program evaluation settings. Let Yt denote earnings and Xt recent

past participation in a job-training program. Ashenfelter (1978) observed that Manpower

Development and Training Act (MDTA) trainees had unusually low earnings in the year

prior to undertaking training, consistent with a behavioral model where poor labor market

outcomes (low values of Yt−1) induced agents to seek out training in the next period (Xt = 1).

In contrast, maintaining no feedback would require that, conditional on the latent attribute,

A, a worker’s labor market history has no bearing on the decision to undertake training; a

rather strong assumption (Ashenfelter and Card, 1985).

Remark 1.1. (Strict exogeneity) In applications, researchers routinely maintain strict

exogeneity of the regressors, Xt, conditional on the latent attribute, A. Strict exogeneity im-

poses independence of Yt and (Xt+1, . . . , XT ) conditional on (Y0, X1, . . . , Xt, A). Chamberlain

(1982a) shows that strict exogeneity is equivalent to the following no feedback condition:

g
(
xt| yt−1, xt−1, a

)
= g

(
xt| y0, xt−1, a

)
, t = 2, . . . , T. (6)

While (5) allows Ys to influenceXt for s < t, (6) rules out such feedback (we allow dependence

on the initial condition throughout). Restriction (6) is a counterpart of Granger’s (1969)

definition of “Y does not cause X” in the panel data setting with latent heterogeneity. If Xt

is a choice variable, and Y t−1 is a component of the agent’s begining-of-period t information

set, then (6) typically implies strong restrictions on economic behavior (e.g., Ashenfelter

and Card, 1985) and/or the structure of agent’s information sets (e.g., Chamberlain, 1984,

1985).4 Our approach, by accommodating unrestricted feedback and heterogeneity, allows

the researcher to proceed without maintaining such assumptions.

1.2 The goal: feedback and heterogeneity robust estimation

In this paper we study estimation of the common parameter, θ, in panel data models when

(1) is the only prior restriction on F (except for some mild regularity conditions). We

wish to construct estimators that are consistent irrespective of the precise instances of the

4Under strict exogeneity, the likelihood function becomes

ℓSE
(
θ, π, ν| yT , xT

)
=

{∫ [ T∏
t=1

fθ (yt| yt−1, xt, a)

]
π (a|x1 . . . , xT , y0) da

}
ν
(
y0, x

T
)
, (7)

where now the distribution of unobserved heterogeneity π (a|x1 . . . , xT , y0) is conditional on covariates in all
periods.
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feedback process, g, heterogeneity distribution, π, and initial condition, ν, which describe

the sampled data. In what follows we call such estimators feedback and heterogeneity robust

(FHR). Because strict exogeneity obtains as a special case, any FHR estimator remains valid

under strict exogeneity. FHR estimators are natural extensions of familiar “fixed effects”

approaches to estimation in panel data models without feedback. We fully characterize the

set of moment-based FHR estimators. We also derive semiparametric efficiency bounds for θ.

In particular, our results allow for a precise quantification of the information loss associated

with accommodating unrestricted feedback relative to maintaining strict exogeneity.

One alternative to FHR estimation involves assuming that both the feedback process, g,

and heterogeneity density, π, belong to parametric families indexed by some parameter vector

η. With these additional maintained assumptions, the econometrician can then maximize the

resulting likelihood, conditional on Y0 and X1, with respect to both θ and η. This transforms

the problem from a semiparametric to a parametric one. Consistency of such parametric

“random effects” estimators typically requires that the additionally maintained parametric

restrictions on g and π hold in the sampled population. Consequently, such estimators are

not generally feedback and heterogeneity robust.

We next formally define the FHR property. Let θ ∈ Θ, and ω = (g, π, ν) ∈ Ω collect all

the nuisance parameters in our model. We assume that all elements ω ∈ Ω have a common

support, known to the econometrician (which may be unbounded and include the full real

line, for example, for the support of the heterogeneity A). Let Eθ,ω [·] denote an expectation

taken under the DGP at (θ, ω). Let ϕθ (y0, y1, . . . , yT , x1, . . . , xT ) be a function of the observed

data indexed by θ. We say that ϕθ is a FHR moment function if, for all ω such that ϕθ is

absolutely integrable under DGP (θ, ω), we have

Eθ,ω [ϕθ (Y0, Y1, . . . , YT , X1, . . . , XT )] = 0. (8)

The main goal of the paper is to derive moment restrictions ϕθ that have the FHR

property. We will first provide a complete characterization of FHR moment restrictions for

θ in Section 2.5 Then, in Section 3 we will show how essentially the same analysis can be

used to provide a characterization of FHR moment functions for average effects of the form

µ(θ, ω) = Eθ,ω

[
hθ
(
Y T , XT , A

)]
,

where hθ
(
Y T , XT , A

)
is a known function of (Y T , XT , A) indexed by θ. Average effects

5In fact, our characterization of FHR moment functions remains valid if θ is infinite-dimensional (for
example, if θ contains nonparametric elements such as functions). However, the finite-dimensional θ case
contains many important models, and all the examples we will use as illustrations feature a finite-dimensional
θ vector. We also focus on this case in our analysis of efficiency.
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include a variety of causal or structural parameters, such as average partial effects, as in

Chamberlain (1984), and average structural functions, as in Blundell and Powell (2003).

Since any FHR moment function is also valid under strict exogeneity, the set of all FHR

moment conditions for a given panel data model will be a subset of the corresponding set of

moment conditions derived under strict exogeneity (and characterized in Bonhomme, 2012).

In some cases the latter set may be non-trivial and the former empty. For example, Cham-

berlain (2010) showed point identification of the panel logit model under strict exogeneity,

while Bonhomme et al. (2023) show a failure of identification in this model under feedback

(see also Section 6 below).

2 FHR moment restrictions for common parameters

This section presents our first main result: a characterization of all FHR moment conditions

for θ. As an application, we also specialize our results to provide a constructive characteri-

zation of the set of all possible FHR moment conditions for the MPH model.

2.1 Main characterization of FHR moments for θ

We begin by characterizing the set of FHR moments for θ.

Theorem 2.1. (FHR Moment Characterization). Let θ ∈ Θ. (A) Suppose that the

following T restrictions hold: (i)

∫
ϕθ(y

T , xT )
T∏
t=1

fθ(yt | yt−1, xt, a)dy
1:T = 0, (9)

and (ii), for all s = 2, ..., T ,

∫
ϕθ(y

T , xT )
T∏
t=s

fθ(yt | yt−1, xt, a)dy
s:T does not depend on xs:T . (10)

Then, for all ω = (g, π, ν) ∈ Ω such that Eθ,ω

[∣∣ϕθ(Y
T , XT )

∣∣] <∞, we have

Eθ,ω[ϕθ(Y
T , XT )] = 0.

(B) Suppose that, (i) the root density ω 7→ ℓ1/2
(
θ, ω| yT , xT

)
is differentiable in quadratic

mean at ω∗ for some ω∗ = (g∗, π∗, ν∗) ∈ Ω, and (ii) there is a neighborhood N of ω∗ such

that supω∈N Eθ,ω[|ϕθ(Y
T , XT )|2] <∞, then, the converse is also true.
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As an implication of Part (A) of Theorem 2.1, suppose the data is generated according to

some (θ0, ω0). Then any function ϕθ that satisfies (9) and (10) and is absolutely integrable

under the population DGP (θ0, ω0) has zero mean at the true θ0, that is,

Eθ0,ω0 [ϕθ0(Y
T , XT )] = 0.

To see this, simply apply Part (A) of Theorem 2.1 with θ = θ0 and ω = ω0.

The first condition for the FHR property, restriction (9), ensures robustness of ϕθ to the

presence of heterogeneity of an unknown form. This condition is highlighted in Bonhomme

(2012), in a setting with strictly exogenous covariates, as the key condition ensuring valid

moment functions for θ. Under strict exogeneity, (9) ensures that ϕθ(Y
T , XT ) is conditionally

mean zero given XT and A. By the law of iterated expectations, this suffices to ensure that

it is unconditionally mean zero as well. The functional differencing approach then provides

a general recipe for constructing functions ϕθ satisfying (9).

To illustrate how the presence of feedback modifies the interpretation of condition (9),

consider the T = 2 setting. In this case, the condition is∫ [∫
ϕθ (y0, y1, y2, x1, x2) fθ(y2 | y1, x2, a)dy2

]
fθ(y1 | y0, x1, a)dy1 = 0,

which coincides with

E [E [ϕθ (Y0, Y1, Y2, X1, X2)|Y0, Y1, X1, X2 = x2, A] |Y0, X1, A] = 0 for all x2. (11)

Here the inner expectation corresponds to an average over y2 with respect to its model density,

fθ(y2 | y1, x2, a). This inner expectation conditions on X2 = x2, while the outer expectation,

which averages over y1 with respect to its model density, fθ(y1 | y0, x1, a), does not condition
on x2. This is a key difference between the heterogeneous feedback case, considered here, and

the setting with strict exogeneity studied by Bonhomme (2012). Under strict exogeneity, Y1

is independent of X2 conditional on (Y0, X1, A), so (11) coincides with

E [E [ϕθ (Y0, Y1, Y2, X1, X2)|Y0, Y1, X1, X2, A] |Y0, X1, X2, A] = 0,

with both the inner and outer expectations conditioning on X2. By iterated expectations,

this conditional expectation corresponds to a zero mean condition given A, initial conditions,

and the entire sequence of covariates,

E [ϕθ (Y0, Y1, Y2, X1, X2)|Y0, X1, X2, A] = 0.
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However, under feedback it is not generally the case that (11) can be written as a zero mean

condition given the covariates sequence (X1, X2).

In the presence of feedback, Theorem 2.1 additionally requires the T − 1 conditions (10),

to ensure that ϕθ is a valid moment function. To explain this additional requirement, consider

again the T = 2 setting, in which case (10) reads∫
ϕθ (y0, y1, y2, x1, x2) fθ(y2 | y1, x2, a)dy2 does not depend on x2,

which corresponds to the single mean independence restriction

E [ϕθ (Y0, Y1, Y2, X1, X2)|Y0, Y1, X1, X2, A] = E [ϕθ (Y0, Y1, Y2, X1, X2)|Y0, Y1, X1, A] , (12)

Equation (12) implies that, at the the population parameter, X2 does not predict

ϕθ (Y0, Y1, Y2, X1, X2) conditional on Y0, Y1, X1, A. Under this condition, which we interpret

as “feedback robustness” of ϕθ, the conditioning on X2 = x2 disappears in (11), which implies

E [E [ϕθ (Y0, Y1, Y2, X1, X2)|Y0, Y1, X1, A] |Y0, X1, A] = 0,

ensuring, by iterated expectations, that ϕθ is a valid moment function. Importantly, ϕθ is

then a valid moment under both unrestricted heterogeneity and unrestricted feedback.

Lastly, Theorem 2.1 also establishes that (9) and (10) are, under suitable conditions,

necessary for the FHR property. To show the necessity property, we assume quadratic mean

differentiability at (θ, ω∗) as stated in Part (B) Condition (i). This is a standard regularity

condition in semiparametric estimation, see for example Van der Vaart (2000, Ch. 25). Part

(B) Condition (ii), which imposes square-integrability of the moment function in a neighbor-

hood of ω∗, is similarly standard; e.g., see the assumptions for the generalized information

equality in Lemma 5.4 of Newey and McFadden (1994).6 We will rely on differentiability in

quadratic mean in our analysis of efficiency in Section 4.

2.2 Alternative characterization of FHR moments for θ

The following corollary to Theorem 2.1 facilitates the construction of FHR moment functions

in practice.

Corollary 2.1.1. (Alternative FHR Moment Characterization) Let ω∗ ∈ Ω. An

absolutely-integrable function ϕθ under (θ, ω∗) satisfies (9) and (10) if and only if there exist

6One can show that, if ϕθ is bounded, then the necessity of (9) and (10) obtains directly without reference
to ω∗ or differentiability in quadratic mean.
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absolutely-integrable functions ψθ,t under (θ, ω∗), for t = 1, . . . , T − 1, such that:

E
[
ϕθ(Y

T , XT )
∣∣Y T−1, XT , A

]
=

T−1∑
t=1

ψθ,t(Y
t, X t, A), (13)

with E [ψθ,t (Y
t, X t, A)|Y t−1, X t, A] = 0 for t = 1, . . . , T − 1.

To understand Corollary 2.1.1, it is helpful to return to the T = 2 setting. In this case,

letting

ψθ,1(Y0, Y1, X1, A) = E[ϕθ(Y0, Y1, Y2, X1, X2, A) |Y0, Y1, X1, A],

it follows from (9) that

ψθ,1(Y0, Y1, X1, A) = E[ϕθ(Y0, Y1, Y2, X1, X2, A) |Y0, Y1, X1, X2, A],

which implies (13), whereas it follows from (10) that

E[ψθ,1(Y0, Y1, X1, A) |Y0, X1, A] = 0

(a requirement for ψθ,1 given in the corollary).

The representation provided by Corollary 2.1.1 suggests a systematic recipe for construct-

ing FHR moment functions. The first step involves finding functions ψθ,t(Y
t, X t, A) that are

mean zero conditional on Y t−1, X t, A for t = 1, . . . , T − 1. This is straightforward since

any function of (Y t, X t, A), suitably de-meaned, automatically fulfills this requirement (see

Section 6 for several examples). Then, given a collection of ψθ,t(Y
t, X t, A) functions, the

second step requires solving a linear integral equation to recover a valid moment function ϕθ.

Indeed, (13) can equivalently be written as

∫
ϕθ(y

T , xT )fθ(yT | yT−1, xT , a)dyT =
T−1∑
t=1

ψθ,t(y
t, xt, a), (14)

which is known as an inhomogeneous Fredholm equation of the first kind. Note that the

integral operator on the left-hand side of (14) is known given the parameter θ. Solution

methods for this type of linear integral equation are the subject of a large literature (e.g.,

Engl et al., 1996; Carrasco et al., 2007). In Section 6 we will show how to construct FHR

moment functions in some specific models using Corollary 2.1.1, and discuss when such

functions exist.
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A special case of Corollary 2.1.1 obtains when one is able to find functions ηθ,t such that

E
[
ηθ,t
(
Y t, X t

)∣∣Y t−1, X t, A
]
= b (Y0, X1, A) , (15)

for some function b of the heterogeneity and initial conditions. Then, the instrumented first

difference

ϕθ(y
T , xT ) = [ηθ,T

(
yT , xT

)
− ηθ,T−1

(
yT−1, xT−1

)
] ·m(yT−2, xT−1)

satisfies (13), for ψθ,T−1(y
T−1, xT−1, a) = [b (y0, x1, a) − ηθ,T−1

(
yT−1, xT−1

)
] · m(yT−2, xT−1)

and ψθ,t = 0 for all t < T − 1 (for an arbitrary function m). This provides a FHR moment

function on θ. More generally, one can check that

ϕθ(y
t, xt) =

[
ηθ,t
(
yt, xt

)
− ηθ,t−1

(
yt−1, xt−1

)]
·m(yt−2, xt−1), t = 2, ..., T, (16)

all satisfy (13), thus providing additional moments.

We now illustrate this particular recipe with the MPH model.

Example 1 (Continued). (Simple Moments for the MPH) It is convenient to first

develop some additional implications of the MPH model under feedback. Recall the notations

zt = (yt, yt−1, x
′
t)

′ and ρθ (zt) = Λα (yt) exp (γyt−1 + x′tβ). Adapting arguments appearing in

Lancaster (1990), Hahn (1994) and Ridder and Woutersen (2003), it is straightforward to

show that

ρθ (Zt)|Y t−1, X t, A ∼ Exponential
(
eA
)
, t = 1, . . . , T, (17)

(see Lemma C.1 in Supplemental Appendix C). From this observation we have

E
[
ρθ (Zt)|Y t−1, X t, A

]
= e−A, t = 1, . . . , T, (18)

which coincides with (15) after setting ηθ,t(Y
t, X t) = ρθ(Zt) and b(Y0, X1, A) = e−A. This

yields the FHR moment functions

ϕθ

(
Y t, X t

)
= [ρθ (Zt)− ρθ (Zt−1)] ·m

(
Y t−2, X t−1

)
, t = 2, ..., T, (19)

where m is an arbitrary function. In unpublished dissertation research, Woutersen (2000,

Ch. 1) presented moments similar to (19).

Moments of the form (16) were considered by Arellano and Bond (1991) in the linear model

context, by Chamberlain (1992, 2022) and Wooldridge (1997) for Poisson models, and by Al-

Sadoon et al. (2017) for certain binary choice models. However, this family of estimating
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equations does not exhaust all available FHR moments, and may lead to estimators with low

levels of asymptotic precision in practice. By comparison, Theorem 2.1 and Corollary 2.1.1

characterize all available FHR moments, as we will now illustrate in the case of the MPH

model. Moreover, as we will establish in later sections, our characterization can be used to

derive efficient estimators (i.e., we extend to nonlinear models efficiency arguments which

appear in the linear panel data literature such as in Arellano and Bover, 1995; Arellano and

Honoré, 2001; Arellano, 2016).

2.3 FHR moments for θ in the MPH model

For specific models it is sometimes possible to use Theorem 2.1 to provide a direct charac-

terization of all FHR moment functions. We show how this can be done in the MPH model

with feedback in Lemma 2.2 below. Our result provides insight into the MPH model and

simplifies the derivation of new FHR moments.

Our characterization makes use of several special features of the MPH model, which we

introduce first (full details can be found in Supplemental Appendix C). Let Pθ,t = ρθ (Zt).

Lemma C.1 in Supplemental Appendix C shows that, conditional on Y0, X1, A, the Pθ,t for t =

1, . . . , T are independent exponential random variables; each with a common rate parameter

of eA.

Next, we define a one-to-one transformation of the vector P T
θ into a “forward orthogonal

deviations” part and a “between” part, as follows:

P̃θ,t =
ρθ (Zt)∑T
s=t ρθ (Zs)

, t = 1, . . . , T − 1,

P θ =
T∑
t=1

ρθ (Zt) .

(20)

Observe that P̃θ,t involves the ratio of ρθ (Zt) to the sum of itself and the future values of

ρθ (Zs) for s = t + 1, . . . , T . Lemma C.2 in Supplemental Appendix C establishes that,

conditionally on Y0, X1, A:

P̃θ,t ∼ Beta (1, T − t) , t = 1, . . . , T − 1,

P θ ∼ Gamma
(
T, eA

)
,

(21)

where, throughout, θ is the parameter indexing the DGP. Lemma C.2 additionally establishes

that the elements of
(
P̃θ,1, . . . , P̃θ,T−1, P θ

)
are mutually independent of one another.

Transformation (20) can be thought of as a MPH-specific analog of the forward orthogonal

deviations transformation used by Arellano and Bover (1995) in the context of linear panel
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data models with predetermined regressors. It has the property that the random variables

P̃θ,t are independent of both contemporaneous and lagged predetermined covariates as well as

lagged values of the spell outcomes {(Xis, Yis−1)}ts=1 (see part (i) of Lemma C.1). Appealing

to the same analogy, we can think of P θ as containing the “between” variation in P T
θ .

With these preliminaries in place, we can state the following FHR moment characteriza-

tion for the MPH model with feedback.

Lemma 2.2. (Characterization of FHR moment restrictions for the MPH

model) Consider the MPH model with T ≥ 2. Let ω∗ ∈ Ω. Then an absolutely-integrable ϕθ

under (θ, ω∗) satisfies (9) and (10) if and only if there exist absolutely-integrable ψθ,t under

(θ, ω∗), for t = 1, ..., T , such that:

ϕθ

(
Y T , XT

)
=

T−1∑
t=1

ψθ,t(Y0, P̃
t
θ , P θ, X

t),

where, for t = 1, . . . , T − 1,

E
[
ψθ,t(Y0, P̃

t
θ , P θ, X

t)
∣∣∣Y0, P̃ t−1

θ , P θ, X
t
]
= 0.

The proof of Lemma 2.2 is available in Supplemental Appendix C. It represents a useful

simplification, induced by the special structure of the MPH model, relative to the general

result of Theorem 2.1. Note in particular that the latent heterogeneity A does not appear

in the characterization of Lemma 2.2. To illustrate, consider the T = 2 setting. In this case

the lemma implies that all FHR moment functions are of the form

ϕθ (Y0, Y1, Y2, X1, X2) = ψθ,1(Y0, P̃θ,1, P θ, X1),

where

E
[
ψθ,1(Y0, P̃θ,1, P θ, X1)

∣∣∣Y0, P θ, X1

]
= 0.

We seek functions ψθ,1 of the forward orthogonal deviations P̃θ,1, that are mean zero condi-

tional on the between variation P θ, as well as the initial condition (Y0, X1). It is straight-

forward to construct such functions by de-meaning, and we will exploit this property in our

analysis of efficiency.

For the general case of an arbitrary number T of periods, ϕθ is the sum of functions

ψθ,t

(
Y0, P̃

t
θ , P θ, X

t
)
, for t = 1, . . . , T − 1, that are mean independent of the between vari-

ation, P θ, current and past values of the predetermined regressors, X t, and past values of

the spell outcomes, Y t−1. This structure is reminiscent of how moment conditions are typi-
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cally constructed for linear panel data models with predetermined regressors (see, especially,

Arellano and Bover, 1995).

3 FHR moment restrictions for average effects

In this section we characterize all FHR moment conditions for average effects,

µ(θ, ω) = Eθ,ω

[
hθ
(
Y T , XT , A

)]
,

where hθ
(
Y T , XT , A

)
is a known function of Y T , XT , A indexed by θ.

Example 1 (Continued). (Average Effects in the MPH Model) Consider the average

structural hazard (ASH) function

λ(yt|xt, yt−1) = Eθ,ω

[
λα(yt)e

x′
tβ+γyt−1+A

]
. (22)

The ASH appears to be a new estimand, albeit a natural one given concerns about spurious

duration dependence (Lancaster, 1990; Heckman, 1991). In the context of the MPH model,

the ASH corresponds to the mean survival time for a unit exogenously assigned to policy

Xt = xt and history Yt−1 = yt−1. Like other quantities relevant to causal analysis, the ASH

depends on the (marginal) distribution of unobserved heterogeneity A.7

In nonlinear panel data models, knowledge of θ does not suffice to identify the effect an

external manipulation of a regressor’s value on the probability distribution of the outcome.

This follows from the nonseparable way in which the unobserved heterogeneity enters such

models. In contrast, estimands which average over the marginal distribution of A, such as

(22), do provide easy-to-interpret summaries of such effects.

Until recently the identifiability of such averages was not well understood. Recent work

by Honoré and Tamer (2006), Chernozhukov et al. (2013), Aguirregabiria and Carro (2021),

Davezies et al. (2021), Dobronyi et al. (2021), Pakel and Weidner (2023) and others, however,

has shown that average effects are (partially) identified in several specific settings of interest.

The study of average effects in more general settings, such as those with feedback, as we

consider here, remains underdeveloped (see, for example, Bonhomme et al., 2023).

7A related average effect of interest is the average structural function (ASF) (Blundell and Powell, 2004):

µ(xt, yt−1) = Eθ,ω [m(xt, yt−1, A; θ)] , (23)

where m(xt, yt−1, a; θ) = E [Yt|Xt = xt, Yt−1 = yt−1, A = a].
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3.1 Characterization of FHR moments for µ(θ, ω)

Our first result is an analog of Theorem 2.1 for µ(θ, ω).

Theorem 3.1. (Characterization of moment restrictions for average effects)

Let θ ∈ Θ. (A) Suppose that the following T restrictions hold: (i)

∫ (
φθ(y

T , xT )− hθ(y
T , xT , a)

) T∏
t=1

fθ(yt | yt−1, xt, a)dy
1:T = 0, (24)

and (ii), for all s = 2, ..., T ,

∫ (
φθ(y

T , xT )− hθ(y
T , xT , a)

) T∏
t=s

fθ(yt | yt−1, xt, a)dy
s:T does not depend on xs:T . (25)

Then, for all ω ∈ Ω such that Eθ,ω

[∣∣φθ(Y
T , XT )

∣∣] < ∞ and Eθ,ω

[∣∣hθ(Y T , XT , A)
∣∣] < ∞ we

have

Eθ,ω[φθ(Y
T , XT )] = µ(θ, ω).

(B) Suppose (i) the root density ω 7→ ℓ1/2
(
θ, ω| yT , xT

)
is differentiable in quadratic mean

at ω∗ for some ω∗ = (g∗, π∗, ν∗) ∈ Ω, (ii) there is a neighborhood N of ω∗ such that

supω∈N Eθ,ω[
∥∥ϕθ(y

T , xT )
∥∥2] < ∞ and supω∈N Eθ,ω[∥hθ(Y T , XT , A)∥2] < ∞. Then, the con-

verse is also true.

Note the strong parallel between this theorem and Theorem 2.1. As in the case of θ, (24)

and (25) imply that, under absolute integrability, the true value µ0 = µ(θ0, ω0) satisfies a

moment condition. Indeed, if Eθ0,ω0

[∣∣φθ0(Y
T , XT )

∣∣] <∞ and Eθ0,ω0

[∣∣hθ0(Y T , XT , A)
∣∣] <∞,

then Part (A) implies

Eθ0,ω0 [φθ0(Y
T , XT )] = µ0.

This moment condition has the FHR property: (24) ensures that φθ is robust to an unknown

distribution of unobserved heterogeneity, whereas the T − 1 conditions (25) endow φθ with

robustness to heterogenous feedback of an unknown form.

We additionally state the following corollary, which mimics Corollary 2.1.1 and suggests

a systematic recipe for constructing functions φθ.

Corollary 3.1.1. (Alternative characterization of moment restrictions for

average effects) Let ω∗ ∈ Ω. Suppose that hθ is absolutely integrable under (θ, ω∗). An

absolutely-integrable φθ satisfies (24)-(25) if and only if there exist absolutely-integrable ζθ,t,
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for t = 1, . . . , T − 1, such that:

E
[
φθ(Y

T , XT )− hθ(Y
T , XT , A) |Y T−1, XT , A

]
=

T−1∑
t=1

ζθ,t(Y
t, X t, A), (26)

with E [ζθ,t(Y
t, X t, A) |Y t−1, X t, A] = 0 for t = 1, . . . , T − 1.

3.2 FHR moments for the average structural hazard

The conditional hazard function

λ (yt| yt−1, xt, a) = λα(yt)e
x′
tβ+γyt−1+a

gives the instantaneous exit rate of a unit, at duration yt, with lagged duration yt−1,

beginning-of-spell covariate xt, and latent attribute a. Unfortunately, although easily iden-

tified, the observed hazard function

λ (yt| yt−1, xt) = λα(yt)e
x′
tβ+γyt−1E

[
eA
∣∣Yt > yt, Yt−1 = yt−1, Xt = xt

]
suffers from spurious duration dependence (see Lancaster, 1990; Heckman,

1991): units with higher values of A will exit earlier, implying that the mean

E
[
eA
∣∣Yt > yt, Yt−1 = yt−1, Xt = xt

]
declines with yt. In contrast, the average structural

hazard (ASH),

λ (yt| yt−1, xt) = λα(yt)e
x′
tβ+γyt−1E

[
eA
]
, (27)

which equals the (expected) hazard function for a randomly sampled unit when externally

assigned lagged duration yt−1 and covariate xt, does not suffer from heterogeneity bias.

Since P θ

∣∣Y0, X1, A ∼ Gamma
(
T, eA

)
we have

E
[
P

δ

θ

∣∣∣Y0, X1, A
]
= e−δAΓ (T + δ)

Γ (T )
(28)

for δ > −T . Using (28) with δ = −1 shows that E
[
eA
]
= E

[
T−1
P θ

]
, so

λ (yt| yt−1, xt) = λα(yt)e
x′
tβ+γyt−1E

[
T − 1

P θ

]
. (29)

We have thus found one FHR moment function for the ASH. Now, for any other FHR

18



moment function for the ASH, φθ, we have that

ϕθ(Y
T , XT ) = φθ(Y

T , XT )− λα(yt)e
x′
tβ+γyt−1

T − 1

P θ

is a FHR moment function for θ (where here yt, yt−1, xt are fixed values at which the ASH is

evaluated). Since all such moment functions ϕθ are fully characterized in the MPH case by

Lemma 2.2, this characterizes all FHR moment functions for the ASH. It turns out, as we

will shortly see, that estimation based upon the sample analog of (29) is efficient when θ is

replaced by an efficient estimate.

4 Efficient moment restrictions

Theorems 2.1 and 3.1 characterize the complete set of moment conditions available for esti-

mating θ and µ(θ, ω). When this set is nonempty, estimation at parametric rates may be (and

often is) feasible. Moreover, many valid moment restrictions may be available (see Lemma

2.2 for the case of the MPH model). In such settings semiparametric efficiency bound theory

provides a useful tool for selecting specific moments for estimation purposes.

In this section we derive the form of the efficient scores for θ and µ(θ, ω) and, consequently,

their corresponding semiparametric efficiency bounds. As we shall see, the characterizations

presented earlier facilitate the derivation of these bounds. We illustrate the application of

our results via a detailed analysis of efficiency bounds for the MPH model.8

4.1 Efficiency for common parameters and average effects

We begin with a brief review of basic concepts in semiparametric efficiency theory; see, for

example, Van der Vaart (2000, Chap. 25) and Newey (1990). Let θ0, g0, π0, and ν0 denote,

respectively, the common parameter, feedback process, heterogeneity distribution, and initial

condition prevailing in the sampled population. Let ω = (g, π, ν) ∈ Ω, with true value

ω0 = (g0, π0, ν0), denote the nonparametric components of the model.9 A regular parametric

submodel is defined by a likelihood function for a single random draw, ℓ(θ, ωη | yT , xT ), where
ωη0 = ω0 for some scalar η0. The likelihood satisfies mean-square differentiability of its square

root with respect to (θ, η), with its information matrix nonsingular. The semiparametric

8Hahn (1994) derived the information bound for θ in the single-spell case studied by Elbers and Ridder
(1982) and Heckman and Singer (1984). He also derived the bound for the multi-spell case under strict
exogeneity (see also Chamberlain, 1985). Relative to prior work, our analysis covers the case with feedback
and, additionally, considers average effects.

9To characterize the efficiency bound for θ, by ancillarity it is sufficient to consider the conditional density
given (y0, x1) (see, e.g., Hahn, 1994).
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variance bound is the supremum of the Cramer Rao bounds for θ over all such regular

parametric submodels.

Let Sθ denote the score for θ, for a submodel evaluated at θ = θ0 and η = η0:

Sθ(Y T , XT ) =
∂ ln ℓ(θ0, ω0 |Y T , XT )

∂θ
,

where we leave the dependence of Sθ on (θ0, ω0) implicit. Likewise, let Sη denote the score

for η. The nonparametric tangent set Tθ0,ω0,K is the mean-square closure of the K × 1 linear

combinations of scores Sη across all regular parametric submodels. Let T ⊥
θ0,ω0,K

denote the

orthocomplement of Tθ0,ω0,K in the Hilbert space of square-integrable mean-zero functions

with inner product ⟨s1, s2⟩ = Eθ0,ω0

[
s1(Y

T , XT )′s2(Y
T , XT )

]
. By definition this set consists

of all K × 1 elements ϕθ such that ⟨ϕ, s⟩ = 0 for all s ∈ Tθ0,ω0,K .

The next theorem provides a characterization of the orthocomplement of the tangent set,

T ⊥
θ0,ω0,K

, which is key to the analysis of efficiency in our context.

Theorem 4.1. (Orthocomplement of tangent set) T ⊥
θ0,ω0,K

is the linear span of

square-integrable moment functions ϕθ0 ∈ RK that satisfy (9) and (10).

An implication of Theorem 4.1 is that, if ϕθ0 ∈ T ⊥
θ0,ω0,K

, then it is also an element of the

orthogonal complement of the nuisance tangent set associated with any other data generating

process (θ0, ω∗) with ω∗ ̸= ω0 (i.e., we also have ϕθ0 ∈ T ⊥
θ0,ω∗,K

). This follows from the fact

that T ⊥
θ0,ω0,K

consists of the set of FHR moments characterized in Theorem 2.1 earlier; a set

which does not vary with ω0. Indeed, it is precisely this feature of the model which makes

feedback and heterogeneity robust estimation possible. Knowledge, whether a priori or up

to sampling error, of the form of the feedback process and/or heterogeneity distribution is

not required for consistent estimation. This is a crucial feature of the class of models we

study in this paper.

One subtlety is that, although the elements of T ⊥
θ0,ω0,K

do not depend on the precise

instance of ω0, the definition of the reference Hilbert space does depend on it. Let ϕθ0 be a

valid FHR moment that is absolutely integrable under (θ0, ω
∗). Then, while ϕθ0(Y

T , XT ) has

zero mean under both (θ0, ω0) and (θ0, ω
∗), in general its variance differs under ω0 and ω∗.

Consequently, the ability to precisely estimate θ0 using a particular ϕθ generally varies with

the population feedback process and heterogeneity distribution, although the validity of ϕθ

as a moment function does not. This connects to the discussion of locally efficient estimation

below.

To understand Theorem 4.1 it is helpful to consider the implications of restricting ω0

such that it belongs to a parametric family (indexed by, say, η). This is the approach taken
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in, for example, parametric random-effects analysis (e.g., Chamberlain, 1980, 1985). In that

setting the residualized score, S̃θ = Sθ − E
[
SθSη′]× E [SηSη′]−1 Sη, will generally vary with

η: consistent estimation of θ requires knowledge of η (up to sampling error), and it requires

correct specification of the parametric models of feedback and heterogeneity. This is not

required in our approach; indeed (elements of) ω may even be unidentified, while θ remains√
N -estimable.

Theorem 4.1 is reminiscent of the situation which arises in average treatment effect (ATE)

estimation under unconfoundedness with a known propensity score (Robins et al., 1994; Hahn,

1994). In that setting the set of consistent estimating equations for the ATE does not depend

on the form of the conditional distribution of the potential outcomes given covariates. Theo-

rem 4.1 extends prior work for the case of strictly exogenous regressors showing that T ⊥
θ0,ω0,K

is characterized by moment functions that have zero means conditional on all covariates,

initial conditions, and heterogeneity (see, e.g., Hahn, 1994 for the MPH model, and Dano,

2023 for dynamic logit models).

Of course, in many semiparametric estimation problems, consistent estimation of (features

of) the nonparametric model component is a requirement for consistent estimation of θ.

Examples include the binary choice model with random utility components drawn from an

unknown distribution independent of the regressors (see Newey, 1990) and ATE estimation

under unconfoundedness with an unknown propensity score.

Efficient score for θ. Under regularity conditions,10 the semiparametric variance bound

for θ0 is equal to the inverse of the variance of the efficient score

ϕeff
θ0,ω0

(Y T , XT ) = Π
(
Sθ(Y T , XT ) | T ⊥

θ0,ω0,K

)
, (30)

where Π
(
. | T ⊥

θ0,ω0,K

)
denotes the orthogonal projection onto T ⊥

θ0,ω0,K
. Note that the projection

is well defined since T ⊥
θ0,ω0,K

is closed and linear.11 As a result, the efficient moment restriction

for θ0 is

Eθ0,ω0

[
ϕeff
θ0,ω0

(Y T , XT )
]
= 0. (31)

The efficient score ϕeff
θ0,ω0

in (30) is defined through a projection onto the orthocomplement

T ⊥
θ0,ω0,K

, which we have fully characterized in Theorem 4.1. Below we show, via examples,

how to use this observation to calculate – whether analytically or numerically – efficient

10Namely that ℓ(θ, ω|yT , xT ) is smooth in a neighborhood of (θ0, ω0), and that the information matrix is
nonsingular (see for example Theorem 3.2 in Newey, 1990).

11An equivalent and more frequent formulation of the efficient score is ϕeffθ0 = Sθ − Π
(
Sθ | Tθ0,ω0,K

)
(e.g.,

Hahn, 1994), which is interpreted as the residual from the population regression of Sθ on the nuisance tangent
set. The equivalent formulation based on T ⊥

θ0,ω0,K
is convenient to work with in our setting; see van der Laan

and Robins (2003, pp. 57-58).
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scores in models with unknown heterogeneity and feedback.

Efficient score for µ. We now turn to an analysis of efficiency for average effects. Suppose

there exists a moment function φθ0 that identifies an L× 1 average effect of interest µ(θ0, ω0)

given by12

µ(θ0, ω0) = Eθ0,ω0

[
hθ0(Y

T , XT , A)
]
= Eθ0,ω0

[
φθ0(Y

T , XT )
]
, (32)

and suppose that θ0 is identified from (31). Let

φeff
θ0,ω0

(Y T , XT ) = φθ0(Y
T , XT )− Π(φθ0(Y

T , XT ) | T ⊥
θ0,ω0,L

),

where the orthocomplement of the tangent set, T ⊥
θ0,ω0,L

, is given by Theorem 4.1, except for

the fact that the relevant dimension is L instead of K.

Theorem 1 in Brown and Newey (1998) shows that the joint efficient moment restrictions

for θ0 and µ0 = µ(θ0, ω0) are given by (31) and

Eθ0,ω0

[
φeff
θ0,ω0

(Y T , XT )− µ0

]
= 0. (33)

The semiparametric variance bound for µ0 equals the lower L × L block of the asymptotic

variance of the joint GMM estimator (θ̂, µ̂) based on (31) and (33).13

The construction of φeff
θ0,ω0

relies on a function φθ0 that satisfies (32). In some models one

can find such a function (a Riesz representer), which does not depend on the nonparametric

component ω0. This can be done by exploiting Theorem 3.1. See, for example, the discussion

of the average structural hazard function in the MPH earlier. Moreover, φeff
θ0,ω0

is not affected

by the particular choice of φθ0 .
14 Of course not all average effects will have non-zero efficiency

bounds, but when a Riesz representer for an effect of interest is available, the bound can be

calculated using extant results about expectations (Brown and Newey, 1998).

12Standard implicit smoothness conditions are required, namely that, for a regular parametric submodel,

sup(θ,η)∈N Eθ,ωη

[∥∥φθ(Y
T , XT )

∥∥2] <∞ in a neighborhood N of (θ0, η0), such that a generalized information

equality holds (see Brown and Newey, 1998).
13Intuitively, the parametric panel data model imposes restrictions on the distribution of

(
Y 1:T , X2:T

)
given (Y0, X1) that can be used to construct a more efficient estimate of Eθ0,ω0

[φθ0 ] than is provided by the
sample mean of φθ0,i (cf., Graham, 2011; Graham et al., 2012).

14This follows from noting that φθ0(Y
T , XT )−Π(φθ0(Y

T , XT ) | T ⊥
θ0,ω0,L

) = µ0+Π(φθ0(Y
T , XT ) | Tθ0,ω0,L),

and that, if φ1
θ0

and φ2
θ0

both satisfy (32), then Π(φ1
θ0
(Y T , XT ) | Tθ0,ω0,L) = Π(φ2

θ0
(Y T , XT ) | Tθ0,ω0,L) as we

show in Supplemental Appendix Lemma B.1.
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4.2 Moment restrictions based on working models

Although the characterization of feasible moment conditions provided by Theorem 4.1 is

invariant to the specific instance of ω0 indexing the sampled population, the projection (30)

generally does vary with ω0. Consequently, although knowledge of ω0 is not required for

consistent estimation, it is generally valuable for improving asymptotic precision. Moreover,

constructing an estimator which attains the semiparametric efficiency bound for all possible

feedback processes, g0, heterogeneity distributions, π0, and initial conditions, ν0 (i.e., for all

ω0 ∈ Ω) generally requires nonparametrically estimating features of these model components.

This may be practically difficult, or even impossible, in short panels as considered here.

An alternative approach involves constructing locally efficient estimators (e.g., Newey,

1990; Graham et al., 2012). Let ω̃ = (g̃, π̃, ν̃) ∈ Ω denote candidate “working models”

for the feedback process, heterogeneity distribution, and initial condition. We show how to

construct method-of-moments estimators that (i) attain the bound for θ0 (or µ0) when these

working models “happen to characterize the sampled population” (i.e., ω̃ = ω0, but this is

not part of the prior restriction) and (ii) remain
√
N -consistent irrespective of the true ω0

characterizing the sampled population (i.e., when ω̃ ̸= ω0). A key property in our setting is

that consistency holds for arbitrary ω̃ (i.e., our working models may be misspecified), only

subject to regularity conditions.

Given working models ω̃, let

S̃θ(Y T , XT ) =
∂ ln ℓ(θ0, ω̃ |Y T , XT )

∂θ

denote the score for θ0. Next define the counterpart, under the working models, to the efficient

score ϕeff
θ0

for θ0 as

ϕ̃eff
θ0,ω̃

(Y T , XT ) = Π̃
(
S̃θ(Y T , XT ) | T ⊥

θ0,ω̃,K

)
,

where Π̃ denotes the projection operator under the working models, that is,

ϕ̃eff
θ0,ω̃

= arg min
ϕ∈T ⊥

θ0,ω̃,K

Eθ0,ω̃

[(
S̃θ(Y T , XT )− ϕ

(
Y T , XT

))2]
. (34)

We next proceed similarly for µ(θ, ω): the counterpart to the efficient score φeff
θ0,ω0

is

φ̃eff
θ0,ω̃

(Y T , XT ) = φθ0(Y
T , XT )− Π̃(φθ0(Y

T , XT ) | T ⊥
θ0,ω̃,L

). (35)
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Finally, consider the following moment restrictions for θ0 and µ0 = µ(θ0, ω0):

Eθ0,ω0

[
ϕ̃eff
θ0,ω̃

(Y T , XT )
]
= 0, (36)

Eθ0,ω0

[
φ̃eff
θ0,ω̃

(Y T , XT )− µ0

]
= 0, (37)

where we note that the expectations are taken under the true DGP (θ0, ω0).

We can now state the following result.

Theorem 4.2. For any working models ω̃ ∈ Ω such that ϕ̃eff
θ0,ω̃

and φ̃eff
θ0,ω̃

are absolutely

integrable under DGP (θ0, ω0), the moment restrictions (36) and (37) hold. Moreover, if

ω̃ = ω0, then (36) and (37) coincide with the efficient moment restrictions for θ0 and µ0.

Theorem 4.2 articulates a locally efficient approach to estimation. The moment functions

ϕ̃eff
θ0,ω̃

and φ̃eff
θ0,ω̃

have the FHR property, irrespective of whether the working models used to

derive them actually characterize the sampled population. However, if ω̃ = ω0 “happens

to hold” in the sampled population, then (36) and (37) coincide with the efficient moment

restrictions for θ0 and µ0 (when ω̃ = ω0 is not part of the prior restriction used to calculate

the efficiency bound).

The functions ϕ̃eff
θ0,ω̃

and φ̃eff
θ0,ω̃

are FHR because calculation (34) returns an element in

the orthogonal complement of the nuisance tangent set by construction. Calculation (34)

provides a principled way to select a particular FHR moment, one that is optimal if the

working model happens to hold in the sampled population. Heuristically, the method-of-

moments estimator based upon (36) and (37) will be more precise when the working models

are “approximately true”, but this – to repeat – is not required for consistency.

In practice ω̃ may be a fixed set of working models chosen by the researcher. Alterna-

tively the researcher may posit that these models belong to parametric families ωη indexed

by an unknown finite-dimensional (not necessarily scalar) parameter η. These models may

be misspecified, in the sense that there may not exist any η0 such that ωη0 = ω0. Nevertheless

the moments (36) and (37) will be valid for any η. There are different strategies for picking a

particular η. First, the researcher may choose a particular (non-stochastic) η via introspec-

tion. Second, she might maximize the likelihood under the working models with respect to

θ and η. While the resulting estimate of θ will generally be inconsistent, the corresponding

estimate of η can be used to define the working models ω̃ under which ϕ̃eff
θ0,ω̃

and φ̃eff
θ0,ω̃

are

calculated.

A third approach is to select η by maximizing an empirical counterpart to the information

for θ0, as in Lindsay (1985). Let η̂ be such an estimator of η, and let η∗ be its large-

N probability limit. If one defines ω̃ = ωη∗ , then Theorem 4.2 implies that (36)-(37) are
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satisfied at true parameter values θ0 and µ0 (under absolute integrability of the functions).

This suggests that the GMM estimators θ̂ and µ̂ based on (36) and (37) that uses ωη̂ in lieu

of ω̃ is consistent and asymptotically normal under standard conditions. We leave details

about efficient estimation, using working models of increasing dimensions (i.e., “sieves”), to

future work.

Lastly, it is important to stress that our approach based on working models is fundamen-

tally different from (parametric) random-effects maximum likelihood estimation. Indeed,

plugging in misspecified parametric models ωη into the likelihood function (5), and maximiz-

ing that likelihood with respect to θ and η, generally results in an inconsistent estimator of

θ0. In contrast, the moment restrictions (36) and (37) remain valid even when the working

models are (globally) misspecified.

5 Efficiency in the multi-spell MPH with unrestricted

feedback

In this section we specialize the general results presented above in order to analyze semipara-

metric efficiency in the MPH model. We focus on the T = 2 special case in what follows.

5.1 Efficiency bounds analysis

Efficient score for θ. Using Lemma 2.2 and Theorem 4.1, we show in Supplemental Ap-

pendix C that, for T = 2, the efficient score for θ in the MPH model with feedback equals

ϕeff
θ0
(Y 2, X2) = E

[
Sθ(Y 2, X2) | Y0, P̃θ0,1, P θ0 , X1

]
− E

[
Sθ(Y 2, X2) | Y0, P θ0 , X1

]
. (38)

With some additional algebra we show that the efficient score for the β subvector is

ϕeff,β
θ0

(Y 2, X2) = −X1

(
P̃θ0,1 − 1

2

)
P θ0E

[
eA | Y0, P θ0 , X1

]
+ E

[
X2

(
1− (1− P̃θ0,1)P θ0e

A
)
| Y0, P̃θ0,1, P θ0 , X1

]
− E

[
X2

(
1− (1− P̃θ0,1)P θ0e

A
)
| Y0, P θ0 , X1

]
. (39)

The first term in (39) does not involve the feedback process and resembles the efficient score

for β under strict exogeneity originally derived by Hahn (1994):

ϕeff,SE,β
θ0

(Y 2, X2) = (X2 −X1)
(
P̃θ0,1 − 1

2

)
P θ0E

[
eA | Y0, P θ0 , X1, X2

]
. (40)
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The second and third terms of (39), in contrast, are specific to the feedback case, involving

averages over the second-period covariate X2. More generally, the efficient score for θ under

strict exogeneity equals:

ϕeff,SE
θ0

(Y 2, X2) = E
[
Sθ(Y 2, X2) | Y0, P̃θ0,1, P θ0 , X1, X2

]
− E

[
Sθ(Y 2, X2) | Y0, P θ0 , X1, X2

]
.

(41)

In the presence of feedback and latent heterogeneity, X2 is an endogenous variable and

cannot be conditioned on.

Efficient estimation of the ASH. An interesting average effect in the context of the MPH is

the average structural hazard (ASH) defined in (22). The latter is identified by the FHR mo-

ment function in (29), namely φθ0(Y
T , XT ) = λα0(yt)e

x′
tβ0+γ0yt−1 T−1

P θ0

. Applying Lemma C.3

in the Supplemental Appendix, which characterizes projections onto the orthocomplement of

the tangent set in the MPH model, one can readily show that Π(φθ0(Y
T , XT ) | T ⊥

θ0,ω0,L
) = 0.

It then follows from the discussion in Section 4.1 that the efficient moment function for the

ASH is

φeff
θ0,ω0

(Y T , XT ) = φθ0(Y
T , XT ) = λα0(yt)e

x′
tβ0+γ0yt−1

T − 1

P θ0

.

In turn, a semiparametrically efficient estimator of the ASH is

λ̂(yt|xt, yt−1; θ̂) = λα̂(yt)e
x′
tβ̂+γ̂yt−1

1

N

N∑
i=1

T − 1

P iθ̂

,

where θ̂ = (α̂, β̂′, γ̂)′ is semiparametrically efficient for θ.15

5.2 Numerical illustrations

In this subsection we summarize our findings from two numerical experiments designed to

(i) illustrate the efficiency loss associated with accommodating feedback, and (ii) assess the

performance of locally efficient estimators based on working models. Our context is the MPH

model. In both experiments we impose a Weibull baseline hazard, set T = 2, and fix the

15Note that this coincides with the method of moments estimator of Brown and Newey (1998) when the
condition φθ0(Y

T , XT ) − µ0 ∈ Tθ0,ω0,L holds, where µ0 = µ(θ0, ω0) denotes the average effect of interest
and φθ0 is an identifying moment function. This condition is satisfied in the case of the ASH for the choice
φθ0(Y

T , XT ) = λα0(yt)e
x′
tβ0+γ0yt−1 T−1

P θ0

.
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common parameter at θ0 = (α0, γ0, β0) = (3
4
, 3
4
ln 2,− 1

10
). Our experiments are meant to

numerically approximate the asymptotic precision of various methods of estimation, not to

assess the accuracy of such approximations in small samples. Details on implementation can

be found in Supplemental Appendix D.

The initial duration is drawn from an exponential distribution: Y0 ∼ Exponential(3
2
), and

the first-period covariate is a randomized binary treatment: X1 ∼ Bernoulli(1
2
). The het-

erogeneity distribution equals V = eA ∼ Gamma(5, 5), independent of Y0, X1. The second-

period covariate, X2, is a Bernoulli random variable with success probability p(Y0, Y1, X1, V ),

specified differently across the two experiments to reflect alternative assumptions about the

DGP:

• In Experiment (A), we set p(Y0, Y1, X1, V ) = 1− exp(−(Y0 +X1)V ), which produces a

DGP with strictly exogenous covariates but correlated unobserved heterogeneity.

• In Experiment (B), we instead let p(Y0, Y1, X1, V ) = 1−exp(−(Y0 +X1 + Y1)V ), which

introduces feedback from past outcomes to future covariates, while continuing to include

correlated heterogeneity.

One goal of our experiments is to assess the efficiency loss that arises when a researcher

wishes to accommodate the possibility of heterogenous feedback, but no such feedback is

actually present in the sampled population. Put differently, this exercise gives us a sense of

the benefit, in terms of asymptotic precision, of using the strict exogeneity assumption when

it is valid (as is the case for the DGP in Experiment (A)).

We compare the asymptotic standard errors of two GMM estimators: the first uses the

efficient score under strict exogeneity (41), while the second uses the efficient score under

feedback (38).

The close connection between our FHR moment characterization (Theorem 2.1) and the

relevant semiparametric efficiency bound theory (Theorem 4.1), raises interesting practical

questions regarding estimation. While many possible FHR moments are available in the

MPH setting, the precision with which they recover θ varies with the population values of

the feedback process and heterogeneity distribution.

The complex form of the efficient score (those for the baseline hazard parameter, α, and

the coefficient on the lagged duration, γ – both reported in Supplemental Appendix C –

are particularly complicated), suggests that crafting a globally efficient estimator would be

difficult. As a principled, yet practical, alternative, we instead explore the properties of a

locally efficient estimator based upon a simple working model for ω̃ = (g̃, π̃) (a model for ν

is not needed in this case).
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Our chosen working models are deliberately rudimentary, intended to illustrate how a re-

searcher might build parsimonious working models while retaining favorable efficiency prop-

ertie in more realistic settings. Specifically, in contrast to what prevails in the sampled

population, the working model for the feedback process maintains that X2 ∼ Bernoulli(p),

for a constant p. Observe that the working model for the feedback process involves no feed-

back. For the heterogeneity distribution, we calculate the locally efficient score under a vague

Gamma prior of π̃(v) = 1
v
1{v > 0}, independent of initial conditions.

Putting all these pieces together yields the following locally efficient score for β:

ϕ̃eff,β
θ0,ω̃

(Y 2, X2) = 2 (Eg̃ [X2]−X1)
(
P̃θ0,1 − 1

2

)
= 2 (p−X1)

(
P̃θ0,1 − 1

2

)
,

which is simpler than its optimal counterpart (39) yet, of course, still feedback and

heterogeneity robust. Additional details, along with the full expression for the score

ϕ̃eff
θ0,ω̃

(Y0, P̃θ0,1, P θ0 , X1), are provided in Supplemental Appendix D.

As a final point of comparison, we also report the limiting standard errors of a just-

identified GMM estimator that employs the moment function:

ϕθ0(Y
2, X2) =


2 + ln

(
1− P̃θ0,1

)
+ ln

(
P̃θ0,1

)
X1

(
ln
(
1− P̃θ0,1

)
− ln

(
P̃θ0,1

))
Y0

(
ln
(
1− P̃θ0,1

)
− ln

(
P̃θ0,1

))
 . (42)

The first entry in (42) is a mean-zero function that exploits the fact that P̃θ0,1 ∼ U [0, 1]

and leverages symmetry (it is also, coincidentally, a component of the efficient score for α

under the Weibull baseline hazard, derived and presented in Supplemental Appendix C). The

second and third entries correspond to the log-transformed analogs of (19). While this set

of moment conditions lacks an overt efficiency justification, it reflects a common strategy of

choosing a small set of “simple” moments for estimation purposes. We include it primarily to

benchmark the efficiency gains provided by the locally efficient approach based on working

models.

Table 1 reports the asymptotic standard errors for each estimate of θ0 in Experiment

(A). We make several observations. First, comparing the first and second rows reveals that

accommodating feedback – when it is, in fact, absent from the DGP – results in some efficiency

loss for the slope coefficient β, with a 29% increase in standard error. Strict exogeneity is a

strong assumption and imposing it, when it is valid to do so, improves asymptotic precision.

Although allowing for feedack degrades the precision with which we can learn β, this is

not really the case for α (the Weibull baseline hazard parameter) and γ (the lagged duration
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dependence parameter) in design (A). This finding is consistent with the structure of the

efficient scores: those for α and γ are very similar under both strict exogeneity and feedback.16

By contrast, the efficient score for β differs markedly across the two settings.

A second observation, inspecting the third row of the table, is that the precision loss asso-

ciated with using the locally efficient estimator based on the working models ω̃ is moderate.

Recall that our working models do not characterize the sampled population in design (A). For

β and γ, we observe a 28% and 26% increase in standard error when comparing rows 2 and

3. The efficiency losses are concentrated on the coefficients for the predetermined covariate

and the lagged dependent variable, with only minimal deterioration for the parameter of the

baseline hazard α.

Finally, the approach based on working models leads to large improvements relative to

using the “simple” moment functions (42). As seen in row 4, the standard errors associated

with the simple GMM estimator are substantially larger for all three parameters. For exam-

ple, the standard error for γ is nearly 7 times higher than that obtained using the estimator

based on the working models ω̃ (compare rows 3 and 4, column 3).

Table 1: Asymptotic standard errors relative to the semiparametric efficiency bound with
strict exogeneity in Experiment (A)

α β γ
Eff.score SE 1.0 1.0 1.0
Eff.score FB 1.000 1.292 1.003
Locally Eff.score FB 1.035 1.660 1.264
Simple moments 2.711 2.954 8.767

Notes: SE denotes strict exogeneity, FB denotes feedback. The DGP satisfies strict exogeneity.

In Experiment (B), we repeat our analysis, but for a population where heterogenous

feedback is, in fact, present. Accordingly, Table 2 compares the asymptotic standard errors

of the locally efficient estimator based on ϕ̃eff,β
θ0,ω̃

to that of the “simple” GMM estimator based

on (42) under the second DGP described above (an estimate based on the efficient score

under strict exogeneity would not be consistent in this design). As a benchmark, we use

the globally semiparametrically efficient estimator based upon the true efficient score that

uses (38). The fourth column of Table 2 also reports the corresponding asymptotic standard

errors for the average structural hazard (ASH) when using the efficient moment function

presented in the previous subsection. The key takeaways mirror those of Table 1. First, the

efficiency loss from relying on locally efficient scores is modest, both for common parameters

and for average effects. Second, and perhaps more importantly, locally efficient estimators

16Compare (77) to (80) and (75) to (79) in Supplemental Appendix C.
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significantly outperform the alternative of using a set of “simple” moments, reaffirming the

practical advantages of approaches based on working models.

Table 2: Asymptotic standard errors relative to the semiparametric efficiency bound with
feedback in Experiment (B)

α β γ ASH
Eff.score FB 1.0 1.0 1.0 1.0
Locally Eff.score FB 1.030 1.188 1.317 1.012
Simple moments 3.372 3.223 9.965 2.675

Notes: FB denotes feedback. The DGP does not satisfy strict exogeneity. The ASH is evaluated at y1 = y0 =

x1 = 1.

6 Applying the approach to other models

Our characterizations can be used to find FHR moment functions for many models. We have

already analyzed the MPH model in detail. In this section we provide additional analyti-

cal examples and discuss how to obtain moment functions more generally. Given that the

mathematical structure for model parameters and average effects is similar, in this section

we focus our discussion on θ.

6.1 Existence of moment functions

For certain models, it may be that the only solution to the system of equations in Theorem

2.1, or equivalently in Corollary 2.1.1, is the degenerate one, ϕθ = 0. We now provide two

examples where only trivial moment functions exist. For simplicity we focus on the T = 2

case.

Example 3. (Binary Choice Model) Consider a binary choice logit model with contin-

uous heterogeneity and sequentially exogenous covariates:

Pr(Yt = 1 |Yt−1 = yt−1, Xt = xt, A = a; θ) =
exp(γyt−1 + β′xt + a)

1 + exp(γyt−1 + β′xt + a)
, t = 1, 2.

Any valid moment function of θ = (γ, β′)′ needs to satisfy (10), that is,

1∑
y2=0

ϕθ(y0, y1, y2, x1, x2)
exp(γy1 + β′x2 + a)y2

1 + exp(γy1 + β′x2 + a)
does not depend on x2.
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Suppose that β ̸= 0. The only functions ϕθ satisfying this restriction do not depend on y2 or

x2. Hence, by (9) we obtain

1∑
y1=0

ϕθ(y0, y1, x1)
exp(γy0 + β′x1 + a)y1

1 + exp(γy0 + β′x1 + a)
= 0,

from which we obtain that ϕθ = 0. This shows the absence of non-trivial moment restrictions

for θ in this model. Building on Chamberlain (2022, 2023), Bonhomme et al. (2023) study the

failure of point-identification in binary choice models with sequentially exogenous covariates,

and show how to compute identified sets on the parameters and average effects. For this

reason, our examples in the next subsections will focus on continuous outcomes.17

Example 4. (Random Coefficients Model) Consider the Gaussian linear random co-

efficients model

Yt = γYt−1 +B′Xt + C + εt, εt |Y t−1, X t, A ∼ N (0, σ2), (43)

where A = (B′, C)′ is multidimensional. Any moment function on θ = (γ, σ2)′ needs to

satisfy∫
ϕθ(y0, y1, y2, x1, x2) exp

(
− 1

2σ2
(y2 − γy1 − b′x2 − c)

2

)
dy2 does not depend on x2. (44)

Note that, if (44) holds, then, for all b and x2, x̃2,

ϕθ(y0, y1, y2 + b′x2, x1, x2) = ϕθ(y0, y1, y2 + b′x̃2, x1, x̃2).

This implies that ϕθ does not depend on y2 or x2. Then (9) implies∫
ϕθ(y0, y1, x1) exp

(
− 1

2σ2
(y1 − γy0 − b′x1 − c)

2

)
dy1 = 0,

from which it follows that ϕθ = 0. This shows the only FHR moment function on θ in this

model is the null function. This negative result echoes an example in Chamberlain (2022).

For this reason, our examples in the next subsections, which all involve scalar outcomes, will

feature one-dimensional unobserved heterogeneity.

It is important to note that, even when there exist non-zero functions ϕθ, θ may fail to

17As Bonhomme et al. (2023) note, imposing assumptions on the feedback process, such as Markovianity,
may lead to non-trivial moment restrictions in discrete choice and other models where an approach allowing
for fully unrestricted feedback is uninformative. Extending our approach to accommodate such additional
assumptions is an interesting topic for future work.
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be identified. For example, in the MPH model the covariates may be collinear, in which

case identification fails. This is of course not specific to our setting. As in any nonlinear

GMM problem, identification needs to be verified on a case-by-case basis, and while rank

conditions for local identification of θ are available, verifying global identification may be

difficult. Conversely, it may also be that the only ϕθ satisfying the conditions of Theorem 2.1

is ϕθ = 0, yet θ is point-identified.18 However, in that case an implication of our analysis in

Section 4 is that such identification is necessarily irregular and the semiparametric efficiency

bound for θ is zero (Chamberlain, 1986). Lastly, even if point-identification fails identified

sets may be informative, as shown in Lee (2020) and Bonhomme et al. (2023).

6.2 Obtaining new moment conditions

We now illustrate how researchers can apply the two-step procedure underlying Corollary

2.1.1 to derive new moment conditions. In the first step, we construct a function ψθ =∑T−1
t=1 ψθ,t, for ψθ,t such that

E
[
ψθ,t(Y

t, X t, A) |Y t−1, X t, A
]
= 0, t = 1, . . . , T − 1. (45)

In the second step, in the final time period, we invert the linear integral equation∫
ϕθ(y

T , xT )fθ(yT | yT−1, xT , a)dyT = ψθ(y
T−1, xT−1, a), (46)

to get a FHR moment function ϕθ(y
T , xT ). Naturally, this last task requires the function

ψθ(y
T−1, xT−1, a) to lie in the range of the integral operator induced by the parametric model.

In many examples of interest, equation (46) can actually be inverted in closed form, yielding

explicit expressions for functions ϕθ. As an initial example, consider the Poisson regression

model introduced earlier.

Example 2 (Continued). (Moments for the Poisson model) Recall, for t = 1, . . . , T ,

Yt|Y t−1, X t, A ∼ Poisson (exp (γYt−1 +X ′
tβ + A)) ,

with both feedback and heterogeneity unrestricted. For simplicity, consider the case T = 2

and denote Zt = (X ′
t, Yt−1)

′ and θ = (β′, γ)′. Following the logic laid out above, we start out

by picking a moment function ψθ such that E [ψθ(Y0, Y1, X1, A) |Y0, X1, A] = 0. An example

18As an example, let T = 2 and let Yt = θ + AXt + εt with Xt continuously distributed on R and
εt |Y t−1, Xt, A ∼ N (0, 1). Applying a similar logic to that in model (44), one can show that ϕθ = 0 since
the assumptions imply that P (X2 = 0) = P (X1 = 0) = 0. However, this is a case where the parameter of
interest θ is identified at 0 since limx→0 E[Y1|X1 = x] = θ (Graham and Powell, 2012).
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of such a function is provided by the score for period t = 1 in the likelihood which conditions

on A, ψθ(y0, y1, x1, a) = z1 (y1 − exp(z′1θ + a)).

Next, the challenge is to solve for ϕθ in (46); here corresponding to finding a solution to

∞∑
y2=0

ϕθ(y0, y1, y2, x1, x2) exp(− exp(z′2θ + a))
exp(z′2θ + a)y2

y2!
= ψθ(y0, y1, x1, a).

After multiplying by exp(exp(z′2θ + a)) and letting v = exp(a), this is equivalent to

∞∑
y2=0

ϕθ(y0, y1, y2, x1, x2) exp(y2z
′
2θ)

vy2

y2!
= ψθ(y0, y1, x1, ln v)e

v exp(z′2θ).

This formulation reveals that, for a solution to exist, we require that v 7→
ψθ(y0, y1, x1, ln v)e

v exp(z′2θ) admits a Taylor series at v = 0, with coefficients given by

ϕθ(y0, y1, y2, x1, x2) exp(y2z
′
2θ). Appealing to the uniqueness of the Taylor series, we then

infer that:

ϕθ(y0, y1, y2, x1, x2) =
∂y2

∂vy2

∣∣∣∣
v=0

[
ψθ(y0, y1, x1, ln v)e

v exp(z′2θ)
]
exp(−y2z′2θ). (47)

By Corollary 2.1.1, all FHR moment functions for θ take the form (47), for some appropriate

mean-zero function ψθ. For instance, in the case where ψθ is the score in period t = 1, we

obtain

ϕθ(y0, y1, y2, x1, x2) = z1

(
y1 − y2e

(z1−z2)′θ
)
,

which is proportional to the moment function of Chamberlain (1992) and Wooldridge (1997).

However, using (47) provides many additional valid moment restrictions on θ. For example,

by the second-moment properties of the Poisson distribution,

ψθ(y0, y1, x1, a) =
[
y1 (y1 − 1)− exp (z′1θ + a)

2
]
·m (z1) (48)

is analytic in v = exp(a) and also satisfies (45), from which we get the moment

ϕθ(y0, y1, y2, x1, x2) =

[
y1 (y1 − 1)− y2 (y2 − 1) exp (z′1θ)

2

exp (z′2θ)
2

]
·m (z1) . (49)

Additional FHR moment functions, based upon higher order moments of the Poisson distri-

bution, are straightforward to construct.19

19Moreover, by Theorem 4.1, the functions ϕθ in (47) span the orthocomplement of the tangent set. This
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Example 5. (Mixed Interactive Hazard (MIH) Model) As an example of a new

model, one for which no valid FHR moment conditions are known, consider the following

Mixed Interactive Hazards (MIH) model. The MIH model relaxes the proportionality as-

sumption of the MPH model; the conditional density of the t-th spell equals:

fθ(yt | yt−1, xt, a) = exp(γyt−1 + x′tβ + a+ (x′tδ) · a)λα(yt)

× exp (− exp(γy1 + x′tβ + a+ (x′tδ) · a)Λα(yt)) , (50)

where θ = (α′, γ, β′, δ′)′. Note that (50) simplifies to (3) when δ = 0. However, δ ̸= 0 allows

for more general interaction effects between the covariate and unobserved heterogeneity. The

MIH model is an example of a “generalized hazards” model (Bonev, 2020). Let ψθ(y0, y1, x1, a)

be a function satisfying (45). The integral equation (46), after employing the change of

variable y2 7→ p2, equals∫ ∞

0

ϕθ(y0, y1, p2, x1, x2)e
(1+x′

2δ)a exp
(
−e(1+x′

2δ)ap2

)
dp2 = ψθ(y0, y1, x1, a).

Multiplying both sides by e−(1+x′
2δ)a, this is equivalent to

L [ϕθ(y0, y1, ·, x1, x2)]
(
e(1+x′

2δ)a
)
= e−(1+x′

2δ)aψθ(y0, y1, x1, a),

where L[g](s) =
∫ +∞
0

g(z) exp(−sz)dz denotes the Laplace transform operator. Letting s =

e(1+x′
2δ)a, we effectively wish to solve

L [ϕθ(y0, y1, ·, x1, x2)] (s) = s−1ψθ

(
y0, y1, x1,

ln s

1 + x′2δ

)
,

and, provided s 7→ s−1ψθ

(
y0, y1, x1,

ln s
1+x′

2δ

)
lies in the range of L, we can back out ϕθ using

the inverse Laplace transform. To illustrate, take

ψθ(y0, y1, x1, a) = p1 − exp(−(1 + x′1δ)a),

from which we obtain

L [ϕθ(y0, y1, ·, x1, x2)] (s) = s−1p1 − s
− 1+x′1δ

1+x′2δ
−1
,

suggests that one could compute the efficient score for θ by projecting the θ-score on that set of functions,
although we leave the derivation of the precise form of the efficient score to future work.
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which, provided 1+δ′x1

1+δ′x2
> −1,20 admits the solution

ϕθ(y0, y1, y2, x1, x2) = p1 −
p

1+x′1δ
1+x′2δ
2

Γ
(
1 +

1+x′
1δ

1+x′
2δ

) .
where Γ is the Gamma function. This gives the FHR moment function

ϕθ(y0, y1, y2, x1, x2) =

p1 − p

1+x′1δ
1+x′2δ
2

Γ
(
1 +

1+x′
1δ

1+x′
2δ

)
 ·m(y0, x1). (51)

More generally, one can obtain closed-form expressions if we choose ψθ as a polynomial

function of p1.
21

Example 5 illustrates how, using Corollary 2.1.1, one can derive moment functions by

operator inversion. When suitable functions ψθ exist, closed-form inversion delivers explicit

moment functions. In other settings, it may be that the inverse is not available in closed

form, and numerical inversion techniques need to be used (see, e.g., Engl et al., 1996).

6.3 Irregular moment conditions

In this section we have described an approach, based on Corollary 2.1.1, to construct mo-

ment functions ϕθ when those are available. However, for those functions to be helpful for

estimation they need to be sufficiently regular. In this last part we provide examples that

show how irregularity may arise, and how regularization techniques can help.

Example 1 (Continued). (Irregularity in the MPH Model) As an example, consider

applying Corollary 2.1.1 to the MPH model, where we again focus on the two-period case for

20A similar restriction on predetermined covariates features in the moment restrictions of the censored
regression model of Honoré and Hu (2004).

21For example, we can use for any b > 0,

ψθ(y0, y1, x1, a) = pb1 − exp(−b(1 + x′1δ)a)Γ(1 + b),

which has zero mean, and gives the FHR moment functions

ϕθ(y0, y1, y2, x1, x2) =

pb1 − Γ(1 + b)

Γ
(
1 + b

1+x′
1δ

1+x′
2δ

)pb 1+x′
1δ

1+x′
2δ

2

 ·m(y0, x1),

which provides a continuum of possible moment functions on θ.
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simplicity. We wish to solve for ϕθ in

L [ϕθ(y0, y1, ·, x1, x2)] (ea) = e−aψθ(y0, y1, x1, a),

that is, letting s = ea, in

L [ϕθ(y0, y1, ·, x1, x2)] (s) = s−1ψθ (y0, y1, x1, ln s) .

Suppose in this case that we take ψθ to be the score of the parametric model with respect to

θ, that is,

ψθ (y0, y1, x1, a) = z1(1− p1e
a).

Now, the solution to

L [ϕθ(y0, y1, ·, x1, x2)] (s) = s−1z1(1− p1s)

is

ϕθ(y0, y1, y2, x1, x2) = z1 (1− p1 · δ(p2)) ,

where δ(·) is Dirac’s delta. While ϕθ has zero expectation, it is a highly irregular function

that cannot be directly used in GMM estimation. A possible strategy to address this issue is

to regularize ϕθ by replacing δ(p2) with h
−1κ(p2/h), where κ is a nonparametric kernel and

h > 0 a bandwidth parameter. However, for fixed h, the regularized function ϕθ is no longer

mean-zero, necessitating h to shrink to zero as the sample size increases to ensure consistent

estimation of θ. In the MPH model, it turns out that these difficulties can be entirely avoided.

A rich set of regular moment functions exists, and, in fact, we have characterized the efficient

moment function for this model.22

The regularization strategy we have outlined in the context of the MPH model can be

useful in more complex models. A general strategy, when solving for ϕθ in the integral

equation (13), is to use a regularized inverse of the relevant integral operator as in Carrasco

et al. (2007). We now describe an example where this strategy can be successfully applied.

Example 6. (Nonlinear Regression Model) Consider the nonlinear panel data regres-

sion model

Yt = mβ(Yt−1, Xt, A) + εt, εt |Y t−1, X t, A ∼ N (0, σ2), (52)

22These issues are not unique to the feedback setting. In the context of panel logit models with strictly
exogenous covariates, the conditional likelihood estimator of Honoré and Kyriazidou (2000) can also be
interpreted as relying on an irregular moment condition and requires kernel methods. Only recently did
Honoré and Weidner (2024) demonstrate the existence of regular moment functions for this class of models.
We are grateful to Manuel Arellano for this observation.
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where a 7→ mβ(yt−1, xt, a) is differentiable and strictly increasing. Here θ = (β′, σ2)′. Let

λ > 0, and let

Kλ(z) =
1

2π

∫
λκ(λτ) exp

(
λiτz +

1

2
σ2τ 2

)
dτ,

where κ is the Fourier transform of a kernel function, satisfying κ(0) = 1 and κ′(0) = 0, |κ| is
integrable, and where i is the imaginary number. A possible choice is κ(τ) = 1{τ ∈ (−1, 1)},
which is the Fourier transform of the sinc kernel. Kλ(z) corresponds to the deconvolution

kernel introduced by Stefanski and Carroll (1990) in the context of a deconvolution problem

with normal measurement error. Given any mean-zero function ψθ(y0, y1, x1, a), we define

ϕλ
θ (y0, y1, y2, x1, x2) =

∫
ψθ(y0, y1, x1, a)

∂mβ(y1, x2, a)

∂a
Kλ

(
mβ(y1, x2, a)− y2

λ

)
da. (53)

Applying Corollary 2.1.1 and a regularization strategy, we show in Supplemental Appendix

C.4 that

Eθ,ω

[
ϕλ
θ (Y0, Y1, Y2, X1, X2)

]
→ 0 as λ→ 0. (54)

In this sense, ϕλ
θ provides an approximately valid moment function for θ. As a special

case, consider the linear Gaussian model where mβ(yt−1, xt, a) = γyt−1 + x′tβ + a, and take

ψθ(y0, y1, x1, a) = z1(y1 − γy0 − x′1β − a). Then (53) simplifies to

ϕλ
θ (y0, y1, y2, x1, x2) =

∫
z1(y1 − γy0 − x′1β − a)Kλ

(
γy1 + x′2β + a− y2

λ

)
da

= z1 [(y1 − γy0 − x′1β)− (y2 − γy1 − x′2β)] ,

which corresponds to the Arellano-Bond moment function for the case T = 2. Note that ϕλ
θ

does not depend on λ in this case, so the regularization is immaterial.
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A Proofs of Main Results

A.1 Proof of Theorem 2.1

Part (A). Suppose that ϕθ(Y
T , XT ) is absolutely integrable under DGP (θ, ω). Then, by

the law of iterated expectations, we have

Eθ,ω[ϕθ(Y
T , XT )] = Eθ,ω

[
Eθ,ω[ϕθ(Y

T , XT ) |Y T−1, XT−1, A]
]

= Eθ,ω

[∫
ϕθ(Y

T−1, yT , X
T−1, xT )fθ(yT |Yt−1, xT , A)g(xT |Y T−1, XT−1, A)dyTdxT

]
= Eθ,ω

[∫
ϕθ(Y

T−1, yT , X
T−1, xT )fθ(yT |YT−1, xT , A)dyT

]
,

for any arbitrary xT value, where the last equality follows from (10) for s = T . By successive

applications of the law of iterated expectations and (10) for s = T − 1, ..., 2, we get

Eθ,ω[ϕθ(Y
T , XT )] = Eθ,ω

[∫
ϕθ(Y0, y

1:T , X1, x
2:T )

T∏
t=2

fθ(yt | yt−1, xt, A)fθ(y1 |Y0, X1, A)dy
1:T

]

for any collection of regressor values x2:T . Finally, using (9) implies Eθ,ω[ϕθ(Y
T , XT )] = 0.

Part (B). Suppose that, for all ω ∈ Ω such that Eθ,ω

[∣∣ϕθ(Y
T , XT )

∣∣] < ∞ we have

Eθ,ω[ϕθ(Y
T , XT )] = 0. Let η 7→ ωη denote a smooth path such that ωη∗ = ω∗ at

some η∗. By (B)(ii), there exists a κ-ball around η∗, Bκ(η
∗), such that for all η ∈

Bκ(η
∗), Eθ,ωη

[∣∣ϕθ(Y
T , XT )

∣∣] < ∞ and thus Eθ,ωη [ϕθ(Y
T , XT )] = 0. Next, by (B)(i) and

(B)(ii), we can apply Lemma 5.4 in Newey and McFadden (1994), and conclude that

η 7→ Eθ,ωη

[
ϕθ(Y

T , XT )
]
is differentiable at η∗ with derivative Eθ,ω∗ [ϕθ(Y

T , XT )Sη(Y T , XT )′]

where Sη(Y T , XT ) denotes the score at η∗. Hence, since Eθ,ωη [ϕθ(Y
T , XT )] = 0 for all

η ∈ Bκ(η
∗), we have Eθ,ω∗ [ϕθ(Y

T , XT )Sη(Y T , XT )′] = 0. Moreover, by differentiability in

quadratic mean, Sη is square-integrable under DGP (θ, ω∗). Claim (B) then follows from

Lemma A.1.

Lemma A.1. Suppose that Eθ,ω∗ [
∥∥ϕθ(Y

T , XT )
∥∥2] <∞ and Eθ,ω∗ [ϕθ(Y

T , XT )Sη(Y T , XT )′] =

0 for all score functions Sη of smooth parametric submodels. Then (9)-(10) hold.

Proof. Let ℓ(θ, ωη|yT , xT ) denote a smooth parametric submodel where ωη = (gη, πη, νη) and

ωη∗ = ω∗. We have (T + 1) types of scores associated with submodels: one associated with

the initial condition density, νη, one associated with the heterogeneity distribution, πη, and

T − 1 scores associated with the feedback processes for X2, . . . , XT , gη. We begin with the

heterogeneity component, which yields scores of the form:
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Sη,π(yT , xT ) =

∫
∇η lnπ

∗(a | y0, x1)p∗(y1:T , x2:T , a)da∫
p∗(yT , xT , a)da

,

where

p∗(yT , xT , a) =
T∏
t=1

fθ(yt | yt−1, xt, a)
T∏
t=2

g∗(xt | yt−1, xt−1, a)π∗(a | y0, x1),

and ∇η ln π
∗ denotes the score of the submodel η 7→ πη at ω∗.

Next we consider the scores for the (T − 1) feedback components:

Sη,g,t(yT , xT ) =

∫
∇η ln g

∗(xt | yt−1, xt−1, a)p∗(yT , xT , a)da∫
p∗(yT , xT , a)da

, t = 2, ..., T.

Finally, for the initial condition, the scores take the form:

Sη,ν(yT , xT ) = ∇η ln ν
∗(y0, x1).

Let Sη(yT , xT ) =
(
Sη,π(yT , xT ), Sη,g,2(yT , xT ), . . . , Sη,g,T (yT , xT ), Sη,ν(yT , xT )

)′
. Without loss

of generality, suppose ϕθ is scalar. By assumption, we have

0 = Eθ,ω∗
[
ϕθ

(
Y T , XT

)
Sη,π(Y T , XT )

]
(55)

=

∫
ϕθ(y

T , xT )∇η ln π
∗(a | y0, x1)p∗(yT , xT , a)ν∗(y0, x1)dadyTdxT ,

and, for t = 2, . . . , T ,

0 = Eθ,ω∗
[
ϕθ(Y

T , XT )Sη,g,t(Y T , XT )
]

(56)

=

∫
ϕθ(y

T , xT )∇η ln g
∗(xt | yt−1, xt−1, a)p∗(yT , xT , a)ν∗(y0, x1)dady

TdxT ,

and

0 = Eθ,ω∗
[
ϕθ(Y

T , XT )Sη,ν(Y T , XT )
]

(57)

=

∫
ϕθ(y

T , xT )∇η ln ν
∗(y0, x1)p

∗(yT , xT , a)ν∗(y0, x1)dady
TdxT .
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Note that equation (56) for t = T , after integrating over yT , coincides with:

0 =

∫
∇η ln g

∗(xT | yT−1, xT−1, a)Eθ,ω∗
[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT = xT , A = a
]

×
T−1∏
t=1

fθ(yt | yt−1, xt, a)
T∏
t=2

g∗(xt | yt−1, xt−1, a)π∗(a | y0, x1)ν∗(y0, x1)dadyT−1dxT .

Now, since ∇η ln g
∗(xT | yT−1, xT−1, a) is unrestricted except for the fact that it has zero mean

conditional on (yT−1, xT−1, a) and is square-integrable, we can specifically choose

∇η ln g
∗(xT | yT−1, xT−1, a) = Eθ,ω∗

[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT = xT , A = a
]

− Eθ,ω∗
[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT−1 = xT−1, A = a
]
,

in which case (56) (for t = T ) evaluates to (for Vθ,ω∗ the variance under (θ, ω∗)):∫
Vθ,ω∗

(
Eθ,ω∗

[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT = xT , A = a
]
|Y T−1 = yT−1, XT−1 = xT−1, A = a

)
×

T−1∏
t=1

fθ(yt | yt−1, xt, a)
T∏
t=2

g∗(xt | yt−1, xt−1, a)π∗(a | y0, x1)ν∗(y0, x1)dadyT−1dxT = 0,

which holds if, and only if, Eθ,ω∗
[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT = xT , A = a
]
does not de-

pend on xT . Conversely, if Eθ,ω∗
[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT = xT , A = a
]
does not de-

pend on xT , it is clear that equation (56) for t = T is satisfied since the elements

∇η ln g
∗(xT | yT−1, xT−1, a) have zero mean conditional on (yT−1, xT−1, a). Therefore, (56) for

t = T is equivalent to the requirement that Eθ,ω∗
[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT = xT , A = a
]

does not depend on xT .

Next, consider (56) for t = T − 1. Exploiting the result above, we can integrate over yT−1:T

and xT to get:

0 =

∫
∇η ln g

∗(xT−1 | yT−2, xT−2, a)Eθ,ω∗
[
ϕθ(Y

T , XT )|Y T−2 = yT−2, XT−1 = xT−1, A = a
]

×
T−2∏
t=1

fθ(yt | yt−1, xt, a)
T−1∏
t=2

g∗(xt | yt−1, xt−1, a)π∗(a | y0, x1)ν∗(y0, x1)dadyT−2dxT−1.

Observe that the lack of restrictions on ∇η ln g
∗(xT−1 | yT−2, xT−2, a), besides it being mean

zero conditional on (yT−2, xT−2, a) and being square-integrable, implies, by a logic analogous
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to that used for the t = T case, that (56) for t = T − 1 is equivalent to the requirement that

Eθ,ω∗
[
ϕθ(Y

T , XT )|Y T−1 = yT−1, XT−1 = xT−1, A = a
]

=

∫
ϕθ(y

T , xT )
T∏

t=T−1

fθ(yt | yt−1, xt, a)dy
T−1:T

does not depend on xT−1:T . By inductive reasoning, we conclude that, for all s = 2, . . . , T ,

∫
ϕθ(y

T , xT )
T∏
t=s

fθ(yt | yt−1, xt, a)dy
s:T does not depend on xs:T . (58)

That is, ϕθ satisfies (10).

Next, consider equation (55). Using the results immediately above we get, after integrating

over y1:T and x2:T :∫
∇η lnπ

∗(a | y0, x1)Eθ,ω∗
[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1, A = a
]
π∗(a | y0, x1)ν∗(y0, x1)dady0dx1 = 0,

and since ∇η ln π
∗(a | y0, x1) is unrestricted (beyond having zero mean conditional on (y0, x1)

and being square-integrable), choosing specifically

∇η ln π
∗(a | y0, x1) = Eθ,ω∗

[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1, A = a
]

− Eθ,ω∗
[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1
]

implies that∫
Vθ,ω∗

(
Eθ,ω∗

[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1, A = a
]
|Y0 = y0, X1 = x1

)
× π∗(a | y0, x1)ν∗(y0, x1)dady0dx1 = 0.

Thus, Eθ,ω∗
[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1, A = a
]
does not depend on a. Conversely, if

Eθ,ω∗
[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1, A = a
]
does not depend on a, then (55) also holds since

∇η lnπ
∗(a | y0, x1) has mean-zero conditional on (y0, x1). We therefore conclude that (55) is
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equivalent to

Eθ,ω∗
[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1, A = a
]

=

∫
ϕθ(y

T , xT )
T∏
t=1

fθ(yt | yt−1, xt, a)
T∏
t=2

g∗(xt | yt−1, xt−1, a)dy1:Tdx2:T

=

∫
ϕθ(y

T , xT )
T∏
t=1

fθ(yt | yt−1, xt, a)dy
1:T (by (58) for s = 2)

is a constant independent of a. Hence, we can write

∫
ϕθ(y

T , xT )
T∏
t=1

fθ(yt | yt−1, xt, a)dy
1:T = Eθ,ω∗

[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1
]
. (59)

Next, we also note that (57) can simply be rewritten as:

0 =

∫
Eθ,ω∗

[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1
]
∇η ln ν

∗(y0, x1)ν
∗(y0, x1)dy0dx1.

Since ∇η ln ν
∗(y0, x1) is unrestricted besides being mean-zero and square-integrable, a similar

reasoning to before implies that (57) is equivalent to Eθ,ω∗
[
ϕθ(Y

T , XT )|Y0 = y0, X1 = x1
]
=

Eθ,ω∗
[
ϕθ(Y

T , XT )
]
= 0. This result in combination with (59) implies that ϕθ satisfies (9).

A.2 Proof of Corollary 2.1.1

Assume (13). Then, since
∑T−1

t=1 ψθ,t(y
t, xt, a) does not depend on xT , (10) holds for s = T .

Next, integrating (13) with respect to fθ(yT−1 | yT−2, xT−1, a) implies that

∫
ϕθ(y

T , xT )fθ(yT | yT−1, xT−1, a)fθ(yT−1 | yT−2, xT−1, a)dy
T−1:T =

T−2∑
t=1

ψθ,t(y
t, xt, a),

where we have used the fact that E
[
ψθ,T−1(Y

T−1, XT−1, A) |Y T−2, XT−1, A
]
= 0. In particu-

lar, this implies (10) for s = T−1. Further integrating with respect to fθ(yT−2 | yT−3, xT−2, a)

then yields

∫
ϕθ(y

T , xT )
T∏

t=T−2

fθ(yt | yt−1, xt, a)dy
T−2:T =

T−3∑
t=1

ψθ,t(y
t, xt, a),
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since E
[
ψθ,T−2(Y

T−2, XT−2, A) |Y T−3, XT−2, A
]
= 0. This implies (10) for s = T − 2. Con-

tinuing this reasoning, we easily conclude that for s = 2, . . . , T ,

∫
ϕθ(y

T , xT )
T∏
t=s

fθ(yt | yt−1, xt, a)dy
s:T =

s−1∑
t=1

ψθ,t(y
t, xt, a),

implying (10) for s = 2, . . . , T . Finally, since E [ψθ,1(Y0, Y1, X1, A) |Y0, X1, A] = 0, integrating

the identity

∫
ϕθ(y

T , xT )
T∏
t=2

fθ(yt | yt−1, xt, a)dy
2:T = ψθ,1(y0, y1, x1, a)

with respect to fθ(y1 | y0, x1, a) yields (9).

Conversely, suppose that (9) and (10) hold. Equation (10) for s = T implies that we can

write: ∫
ϕθ(y

T , xT )fθ(yT | yT−1, xT , a)dyT = ϕθ,T−1

(
yT−1, xT−1, a

)
, (60)

for some function ϕθ,T−1

(
yT−1, xT−1, a

)
that does not depend on xT . Then, (10) for s = T−1

entails that:

E
[
ϕθ,T−1

(
Y T−1, XT−1, A

)
|Y T−2, XT−1, A

]
= ϕθ,T−2(Y

T−2, XT−2, A)

for some function ϕθ,T−2(Y
T−2, XT−2, A) that does not depend on XT−1:T . Equivalently, we

can write:

ϕθ,T−1(Y
T−1, XT−1, A) = ϕθ,T−2(Y

T−2, XT−2, A) + ψθ,T−1(Y
T−1, XT−1, A),

with E
[
ψθ,T−1(Y

T−1, XT−1, A) |Y T−2, XT−1, A
]
= 0. Next, (10) for s = T − 2 implies that:

ϕθ,T−2(Y
T−2, XT−2, A) = ϕθ,T−3(Y

T−3, XT−3, A) + ψθ,T−2(Y
T−2, XT−2, A),

for some function ϕθ,T−3(Y
T−3, XT−3, A) that does not depend on XT−2:T , with

E
[
ψθ,T−2(Y

T−2, XT−2, A) |Y T−3, XT−2, A
]
= 0. Continuing this argument based on restric-

tion (10), we conclude that, for s = 2, . . . , T − 1,

ϕθ,s(Y
s, Xs, A) = ϕθ,s−1(Y

s−1, Xs−1, A) + ψθ,s(Y
s, Xs, A),
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such that E [ψθ,s(Y
s, Xs, A) |Y s−1, Xs, A] = 0. Furthermore,

ϕθ,1(Y0, Y1, X1, A) = ψθ,1(Y0, Y1, X1, A),

with E [ψθ,1(Y0, Y1, X1, A) |Y0, X1, A] = 0 by (9). Collecting terms, we have shown that

∫
ϕθ(y

T , xT )fθ(yT | yT−1, xT , a)dyT = ϕθ,T−1(y
T−1, xT−1, a) =

T−1∑
t=1

ψθ,t(y
t, xt, a),

with the property that E [ψθ,t(Y
t, X t, A) |Y t−1, X t, A] = 0 for t = 1, . . . , T−1. This coincides

with (13).

A.3 Proof of Theorem 3.1

Parts (A) and (B) follow from replacing ϕθ(y
T , xT ) by φθ(y

T , xT )−hθ(y
T , xT , a) in the proof

of Theorem 2.1, and from applying the triangle inequality to φθ(y
T , xT )− hθ(y

T , xT , a).

A.4 Proof of Corollary 3.1.1

The proof is the same as the proof of Corollary 2.1.1, except for the fact that ϕθ(y
T , xT ) is

replaced by φθ(y
T , xT )− hθ(y

T , xT , a).

A.5 Proof of Theorem 4.1

Let ℓ(θ, ωη|yT , xT ) denote a smooth parametric submodel, where ωη = (gη, πη, νη) and ωη0 =

ω0 for some scalar η0. Following the logic of Lemma A.1, but now using η0 in lieu of η∗, each

submodel yields a (T + 1) dimensional score vector

Sη(yT , xT ) =
(
Sη,π(yT , xT ), Sη,g,2(yT , xT ), . . . , Sη,g,T (yT , xT ), Sη,ν(yT , xT )

)′
where the first component Sη,π(yT , xT ) corresponds to the heterogeneity component; the next

T − 1 components Sη,g,t, t = 2 . . . , T , are the scores for the feedback process at each period;

and the final term Sη,ν(yT , xT ) is the score for the initial condition.

By definition, the nonparametric tangent set Tθ0,ω0,K is the mean-square closure of elements

ASη, where A is a constant K × (T + 1) matrix. Its orthocomplement is

T ⊥
θ0,ω0,K

=
{
ϕ ∈ RK |E[ϕ] = 0,E[ϕ′ϕ] <∞ with E [ϕ′s] = 0, for all s ∈ Tθ0,ω0,K

}
,
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or, equivalently,

T ⊥
θ0,ω0,K

=
{
ϕ ∈ RK |E[ϕ] = 0,E[ϕ′ϕ] <∞ with E [ϕSη′] = 0,

for all scores Sη of smooth parametric submodels} ,

by Lemma A.1 in Newey (1990). We have ϕθ0 ∈ T ⊥
θ0,ω0,K

if and only if

E
[
ϕθ0(y

T , xT )Sη(yT , xT )′
]
= 0. Thus, by Lemma A.1, we conclude that T ⊥

θ0,ω0,K
consists

of the set of functions ϕθ0 ∈ RK such that each component satisfies conditions (9) and (10)

of Theorem 2.1.

A.6 Proof of Theorem 4.2

By construction, ϕ̃eff
θ0,ω̃

(Y T , XT ) = Π̃
(
S̃θ(Y T , XT ) | T ⊥

θ0,ω̃,K

)
is an element of T ⊥

θ0,ω̃,K
. Thus, it

follows from Theorem 4.1 that ϕ̃eff
θ0,ω̃

satisfies conditions (9) and (10). The moment restric-

tion (36) is then a consequence of ϕ̃eff
θ0,ω̃

being absolutely integrable under DGP (θ0, ω0) and

Theorem 2.1. By the same argument, Eθ0,ω0

[
Π̃(φθ0(Y

T , XT ) | T ⊥
θ0,ω̃,L

)
]
= 0. The moment

condition (37) then follows from the definition of φ̃eff
θ0,ω̃

in (35) and (32). Lastly, when ω̃ = ω0

we have ϕ̃eff
θ0,ω̃

= ϕeff
θ0,ω0

and φ̃eff
θ0,ω̃

= φeff
θ0,ω0

, yielding the efficient moment functions for θ0 and

µ0, respectively.
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ONLINE SUPPLEMENTAL APPENDIX

B Supplementary Lemma

Lemma B.1. Let T ≥ 2 and suppose that φ1
θ(Y

T , XT ), φ2
θ(Y

T , XT ) are two L × 1 square-

integrable moment functions under (θ0, ω0) verifying (32) as well as (24) and (25) of Theorem

3.1. Then, Π(φ1
θ0
(Y T , XT ) | Tθ0,ω0,L) = Π(φ2

θ0
(Y T , XT ) | Tθ0,ω0,L).

Proof. By assumption, ϕθ

(
Y T , XT

)
= φ1

θ(Y
T , XT ) − φ2

θ(Y
T , XT ) ∈ T ⊥

θ0,ω0,L
since it satisfies

the conditions (9)-(10) of Theorem 2.1. Then, we can write

φ1
θ(Y

T , XT ) = φ2
θ(Y

T , XT ) + ϕθ

(
Y0, Y

T , XT
)

= µ(θ, ω) + Π(φ2
θ0
(Y T , XT ) | Tθ0,ω0,L) + Π(φ2

θ0
(Y T , XT ) | T ⊥

θ0,ω0,L
) + ϕθ

(
Y0, Y

T , XT
)
.

By linearity of T ⊥
θ0,ω0,L

, Π(φ2
θ0
(Y T , XT ) | T ⊥

θ0,ω0,L
) + ϕθ

(
Y0, Y

T , XT
)

∈ T ⊥
θ0,ω0,L

. There-

fore, standard properties of Hilbert spaces imply that Π(φ1
θ0
(Y T , XT ) | Tθ0,ω0,L) =

Π(φ2
θ0
(Y T , XT ) | Tθ0,ω0,L).

C Calculations supporting the MPH results presented

in main text

C.1 Some useful distributional properties of the MPH model

Our derivations of the results presented in the main text for the MPH model exploit a number

of its special distributional properties. Variants of these properties feature in prior work, for

example that of Hahn (1994) and Ridder and Woutersen (2003). Our analysis requires these

known implications of the MPH as well as several (apparently) new ones, specific to the

feedback case. This section of the supplemental appendix derives and presents the needed

preliminary results.

Recall the definitions ρθ (zt) = Λα (yt) exp (γyt−1 + x′tβ) for zt = (yt−1, yt, x
′
t)

′ and Pt =

ρθ (Zt) for t = 1, . . . , T with Pt = pt = ρθ (zt) denoting – when the context is clear – a specific

value of the random variable Pt. Unless there is a risk of confusion we omit the dependence

of Pt on θ. The period t conditional survival function equals

Pr
(
Yt > yt| yt−1, xt, a

)
= Sθ

(
yt| yt−1, xt, a

)
= exp (−Λα (yt) exp (γyt−1 + x′tβ + a))

= exp (−ρθ (zt) ea) , (61)
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for t = 1, . . . , T . Using monotonicity of the integrated baseline hazard and (61) we have

Pr
(
Pt > pt| yt−1, xt, a

)
=Pr

(
Yt > Λ−1

α (pt exp (−γyt−1 − x′tβ))
∣∣ yt−1, xt, a

)
=exp

(
−Λα

(
Λ−1

α (pt exp (−γyt−1 − x′tβ))
)
exp (γyt−1 + x′tβ + a)

)
=exp (−ptea) . (62)

Observe that (62) is the survival function for an exponential random variable with rate

parameter ea. Since the mapping from yt → pt is invertible we therefore have that

Pt|P t−1, X t, A ∼ Exponential
(
eA
)
, t = 1, . . . , T,

and also that

f
(
x2:T , p1:T

∣∣ y0, x1, a) = exp

(
Ta−

(
T∑
t=1

pt

)
ea

)
T∏
t=2

g̃
(
xt| y0, p1:t−1, xt−1, a

)
,

where g̃ (xt| y0, p1:t−1, xt−1, a) = g (xt| y0, y1:t−1, xt−1, a) for pt = ρθ (zt) and t = 1, . . . , T .

Integrating over x2:T gives the following lemma.

Lemma C.1. (Exponential Structure of the MPH Model) For the MPH model

defined by Example 1 we have, for t = 1, . . . , T , that (i) Pt|P t−1, X t, A ∼ Exponential
(
eA
)

and (ii) Pt|Y0, X1, A
ind∼ Exponential

(
eA
)
.

Our characterization of the set of FHR moments for the MPH model uses a particular

one-to-one transformation of P T . We next derive the properties of this transformation.

Let Pt
ind∼ Gamma(αt, β) for t = 1, . . . , T and consider the bijective forward orthogonal

transformation V T = G
(
P T
)
:

Vt =
Pt∑T
s=t Ps

, t = 1, . . . , T − 1

VT =
T∑
t=1

Pt,
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with an inverse given by P T = G−1
(
V T
)
:

P1 = V1VT

Pt =
t−1∏
s=1

(1− Vs)VtVT , t = 2, . . . , T − 1

PT =
T−1∏
s=1

(1− Vs)VT .

By the change-of-variable formula,

fV (V1, V2, . . . , VT ) = fP1 (V1VT )
T−1∏
t=2

fPt

(
t−1∏
s=1

(1− Vs)VtVT

)
fPT

(
T−1∏
s=1

(1− Vs)VT

)∣∣∣∣det(dG−1(V T )

dV T

)∣∣∣∣ .
We shall show that:

VT ∼Gamma

(
T∑
t=1

αt, β

)
, (63)

Vt ∼Beta

(
αt,

T∑
s=t+1

αs

)
, t = 1, . . . , T − 1,

with (V1, V2, . . . , VT−1, VT ) additionally mutually independent of one other.

To this end, let J (T )(V1, . . . , VT ) = det
[
dG−1(V T )

dV T

]
. In Subsection C.4 we establish that:

J (T )(V1, . . . , VT ) = V T−1
T

T−2∏
s=1

(1− Vs)
T−(s+1). (64)

Applying the change-of-variables formula then yields, as we show in Subsection C.4,

fV (V1, V2, . . . , VT ) =
β
∑T

t=1 αt

Γ
(∑T

t=1 αt

)V∑T
t=1 αt−1

T e−βVT (65)

×
T−1∏
t=1

Γ
(∑T

s=t αs

)
Γ (αt) Γ

(∑T
s=t+1 αs

)V αt−1
t (1− Vt)

∑T
s=t+1 αs−1, (66)

from which claim (63) immediately follows. This result, in combination with Lemma C.1

above gives, for P̃t for t = 1, . . . , T − 1 and P as defined in the main text, the following

lemma.

Lemma C.2. (“Helmert Transformation” for the MPH Model) For the MPH
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model defined by Example 1 we have, conditional on Y0, X1 and A, (i)

P̃t ∼ Beta (1, T − t) , t = 1, . . . , T − 1,

P ∼ Gamma
(
T, eA

)
,

with (ii) (P̃1, P̃2, . . . , P̃T−1, P ) additionally mutually independent of one another.

C.2 Proof of Lemma 2.2

Recall the bijective transformation between (y1, . . . , yT ) and (p1, . . . , pT ) given by

pt = Λα(yt)e
γyt−1+x′

tβ, t = 1, . . . , T,

as well as the second (bijective) transformation between (p1, . . . , pT ) and (p̃1, . . . , p̃T−1, p)

given by

p̃t =
pt∑T
s=t ps

, t = 1, . . . , T − 1,

p =
T∑
t=1

pt.

The distribution of (P1, . . . , PT ) is stated in Lemma C.1 and that of (P̃1, . . . , P̃T−1, P ) in

Lemma C.2.

From these two bijections we get the following two equivalent representations of ϕθ:

ξθ(y0, p
T , xT ) =ϕθ

(
y0,Λ

−1
α (p1 exp(−γy0 − x′1β)),

. . . ,Λ−1
α (pT exp(−γyT−1 − x′Tβ)), x

T
)

(67)

ψθ(y0, p̃
T−1, p, xT ) =ξθ(y0, p̃1p, (1− p̃1)p̃2p, . . . ,

T−2∏
s=1

(1− p̃s)p̃T−1p,
T−1∏
s=1

(1− p̃s)p, x
T ). (68)

In the present context, condition (10) of Theorem 2.1 for s = T corresponds to a require-

ment on (67) of ∫ +∞

0

ξθ(y0, p
T , xT )eae−eapT dpT does not depend on xT ,

where we have used the change of variable, pT = Λα (yT ) exp (γyT−1 + x′Tβ) (see

Lemma C.1). This implies that L[pT 7→ ξθ(y0, p
T−1, pT , x

T−1, xT )][e
a] = L[pT 7→

ξθ(y0, p
T−1, pT , x

T−1, x̃T )][e
a] for any x̃T , where L denotes the Laplace transform operator.
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By the uniqueness of the Laplace transform, it follows that ξθ(y0, p
T−1, pT , x

T−1, xT ) =

ξθ(y0, p
T−1, pT , x

T−1, x̃T ), meaning that ξθ does not depend on xT . Hereafter we therefore

suppress the dependence of ϕθ, ξθ, ψθ on xT .

Next, consider the decomposition

ψθ(Y0, P̃
T−1, P ,XT−1) =(

ψθ(Y0, P̃
T−1, P ,XT−1)− E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ T−2, P ,XT−1

])
+
(
E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ T−2, P ,XT−1

]
− E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ T−3, P ,XT−2

])
+
(
E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ T−3, P ,XT−2

]
− E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ T−4, P ,XT−3

])
...

+ E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃1, P ,X

2
]
,

or, succinctly,

ψθ(Y0, P̃
T−1, P ,XT−1) =

T−2∑
t=1

ψθ,t(Y0, P̃
t, P ,X t+1) + ψθ,T−1(Y0, P̃

T−1, P ,XT−1),

where

ψθ,T−1(Y0, P̃
T−1, P ,XT−1) = ψθ(Y0, P̃

T−1, P ,XT−1)− E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ T−2, P ,XT−1

]
,

for all t = 2, . . . , T − 2,

ψθ,t

(
Y0, P̃

t, P ,X t+1
)

= E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ t, P ,X t+1

]
−E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ t−1, P ,X t

]
,

and

ψθ,1(Y0, P̃1, P ,X
2) = E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃1, P ,X

2
]
.

The law of iterated expectations readily implies that:

E
[
ψθ,T−1(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ T−2, P ,XT−1

]
= 0,

E
[
ψθ,t(Y0, P̃

t, P ,X t+1)
∣∣∣Y0, P̃ t−1, P ,X t

]
= 0, t = 2, . . . , T − 2.
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It only remains to show that (i) for all t = 1, . . . , T −1, ψθ,t(Y0, P̃
t, P ,X t+1) does not depend

on Xt+1 and (ii)

E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P ,X1

]
= 0.

We start by establishing (i). To that end, fix any s ∈ {2, . . . , T − 1}. By Theorem 2.1

equation (10), we have∫ ∞

0

ξθ(y0, p
T , xT−1)eae−ea

∑T
t=s ptdps:T does not depend on xs:T ,

using the change of variables, pt = Λα (yt) exp (γyt−1 + x′tβ) for t = s, . . . , T . Next, recall

that p̃t =
pt∑T

k=t pk
, t = s, . . . , T − 1, and introduce ps =

∑T
k=s pk. By Lemma C.2 and a

second change of variables, the previous condition is equivalent to∫ ∞

0

Υθ(y0, p
s−1, ps, x

T−1)
e(T−s+1)a

Γ(T − s+ 1)
(ps)

T−s e−eapsdps does not depend on xs:T ,

where

Υθ(y0, p
s−1, ps, x

T−1) =

∫ 1

0

ξθ(y0, p
s−1, p̃sps, (1− p̃s)p̃s+1ps, . . . ,

T−2∏
k=s

(1− p̃k)p̃T−1ps,
T−1∏
k=s

(1− p̃k)ps, x
T−1)

×
T−1∏
t=s

Γ(T − t+ 1)

Γ(T − t)
(1− p̃t)

T−t−1dp̃s:T−1.

Hence,

L[ps 7→ (ps)
T−s Υθ(y0, p

s−1, ps, x
s−1, xs:T−1)][ea] = L[ps 7→ (ps)

T−s Υθ(y0, p
s−1, ps, x

s−1, x̃s:T−1)][ea],

for any possible values x̃s:T−1. By uniqueness of the Laplace transform, we conclude that Υθ

does not depend on xs:T−1. Since there is a bijective transformation between (ps−1, ps) and

(p̃s−1, p) given by p̃t =
pt∑s−1

k=t pk+ps
, t = 1, . . . , s− 1, and p =

∑s−1
k=1 pk + ps, we have:

Υθ(y0, p
s−1, ps, x

T−1) =

∫ 1

0

ψθ(y0, p̃
T−1, p, xT−1)

T−1∏
t=s

Γ(T − t+ 1)

Γ(T − t)
(1− p̃t)

T−t−1dp̃s:T−1

= E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0 = y0, P̃

s−1 = p̃s−1, P = p,Xs = xs
]
,

which does not depend on xs:T−1. The second equality follows from the fact that the “forward

orthogonal transforms” P̃ s:T−1 are independent of P̃ s−1, P ,Xs by part (i) of Lemma C.1 and
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Lemma C.2. This shows that, for s ∈ {3, . . . , T − 1},

ψθ,s−1(Y0, P̃
s−1, P ,Xs)

= E
[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ s−1, P ,Xs

]
−E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃ s−2, P ,Xs−1

]
does not depend on Xs:T , and that, for s = 2

ψθ,1(Y0, P̃1, P ,X
2) = E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P̃1, P ,X

2
]

does not depend on X2:T . This proves (i).

Finally, by Theorem 2.1 equation (9), we have∫ ∞

0

ξθ(y0, p
T , xT−1)eae−ea

∑T
t=1 ptdpT = 0,

where we have once more used the transformation pt = Λα (yt) exp (γyt−1 + x′tβ) for t =

1, . . . , T . Consider now, p̃t =
pt∑T

k=t pk
, t = 1, . . . , T − 1 and p =

∑T
k=1 pk. By Lemma C.2

and a second change of variables, the previous condition is equivalent to∫ ∞

0

Υθ(y0, p, x
T−1)

eTa

Γ(T )
pT−1e−eapdp = 0,

where now Υθ(y0, p, x
T−1) =

(∫ 1

0
ψθ(y0, p̃

T−1, p, xT−1)
∏T−1

t=1
Γ(T−t+1)
Γ(T−t)

(1− p̃t)
T−t−1dp̃T−1

)
.

Hence,

L[p 7→ pT−1Υθ(y0, p, x
T−1)][ea] = 0,

which by uniqueness of the Laplace transform implies that

0 = Υθ(Y0, P ,X
T−1) = E

[
ψθ(Y0, P̃

T−1, P ,XT−1)
∣∣∣Y0, P ,X1

]
,

where the second equality is again a consequence of Lemma C.2. This establishes (ii) which

finally yields the desired representation.

C.3 Semiparametric efficiency bounds for the MPH model

Here we present our semiparametric efficiency bound derivations for the MPH model. Our

calculations exploit Lemma 2.2 and Theorem 4.1 of the main text. In order to compute the
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efficient score for the MPH using equation (30) in the main text, the following lemma is

useful.

Lemma C.3. (MPH Projection) For any L × 1 mean-zero random vector φθ(Y
T , XT )

such that E
[∥∥φθ(Y

T , XT )
∥∥2] <∞, we have

Π(φθ(Y
T , XT )|T ⊥

θ,ω,L) =
T−1∑
t=1

φ⊥
θ,t(Y0, P̃

t, P ,X t),

with

φ⊥
θ,t(Y0, P̃

t, P ,X t) = E
[
φθ(Y

T , XT )|Y0, P̃ t, P ,X t
]
− E

[
φθ(Y

T , XT )|Y0, P̃ t−1, P ,X t
]
.

Proof. First, we note that by iterated expectations,

E
[
φ⊥
θ,t(Y0, P̃

t, P ,X t)|Y0, P̃ t−1, P ,X t
]
= 0.

Thus, Lemma 2.2 and Theorem 4.1 imply that
∑T−1

t=1 φ
⊥
θ,t(Y0, P̃

t, P ,X t) is an element of T ⊥
θ,ω,L.

Next fix s, t ∈ {1, . . . , T − 1} and consider any function ψθ,s(Y0, P̃
s, P ,Xs) ∈ T ⊥

θ,ω,L such that

E
[
ψθ,s(Y0, P̃

s, P ,Xs)|Y0, P̃ s−1, P ,Xs
]
= 0.

Observe that if s > t

E
[
φ⊥
θ,t(Y0, P̃

t, P ,X t)′ψθ,s(Y0, P̃
s, P ,Xs)

]
= E

[
φ⊥
θ,t(Y0, P̃

t, P ,X t)′E
[
ψθ,s(Y0, P̃

s, P ,Xs)|Y0, P̃ s−1, P ,Xs
]]

= 0.

Symmetrically, if t > s,

E
[
φ⊥
θ,t(Y0, P̃

t, P ,X t)′ψθ,s(Y0, P̃
s, P ,Xs)

]
= 0,

since by construction E
[
φ⊥
θ,t(Y0, P̃

t, P ,X t)|Y0, P̃ t−1, P ,X t
]
= 0. Using these observations we
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can show:

E

[(
φθ(Y

T , XT )−
T−1∑
t=1

φ⊥
θ,t(Y0, P̃

t, P ,X t)

)′

ψθ,s

(
Y0, P̃

s, P ,Xs
)]

=E
[(
φθ(Y

T , XT )− φ⊥
θ,s(Y0, P̃

s, P ,Xs)
)′
ψθ,s

(
Y0, P̃

s, P ,Xs
)]

=E
[(
φθ(Y

T , XT )− E
[
φθ(Y

T , XT )|Y0, P̃ s, P ,Xs
])′

ψθ,s

(
Y0, P̃

s, P ,Xs
)]

+ E
[
E
[
φθ(Y

T , XT )|Y0, P̃ s−1, P ,Xs
]′
ψθ,s

(
Y0, P̃

s, P ,Xs
)]

=0,

where the second equality uses the definition of φ⊥
θ,t(Y0, P̃

t, P ,X t) given in the statement

of the Lemma and where the last line follows from iterated expectations and the fact that

E
[
ψθ,s(Y0, P̃

s, P ,Xs)|Y0, P̃ s−1, P ,Xs
]
= 0. Since by Lemma 2.2 and Theorem 4.1, any func-

tion of T ⊥
θ,ω,L is of the form:

ψθ(Y0, P̃
T−1, P ,XT−1) =

T−1∑
t=1

ψθ,t(Y0, P̃
t, P ,X t),

with E
[
ψθ,t(Y0, P̃

t, P ,X t)
∣∣∣Y0, P̃ t−1, P ,X t

]
= 0, t = 1, . . . , T − 1, these calculations show

that

E

[(
φθ(Y

T , XT )−
T−1∑
t=1

φ⊥
θ,t(Y0, P̃

t, P ,X t)

)
ψθ(Y0, P̃

T−1, P ,XT−1)

]
= 0.

By the Projection Theorem (e.g Theorem 11.1 in Van der Vaart (2000)) we conclude that,

Π(φθ(Y0, Y
T , XT )|T ⊥

θ,ω,L) =
T−1∑
t=1

φ⊥
θ,t(Y0, P̃

t, P ,X t),

as claimed.

C.3.1 MPH efficient score under feedback

We can use Lemma C.3 to derive an explicit expression of the efficient score for θ = (α, β′, γ)′.

Given the historical and continued importance of the MPH model, the required calculations,

although involved and tedious, are presented in detail here.

Recall the form the integrated likelihood for the semiparametric panel data model with
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feedback presented in equation (5) of the main text. The form of the parametric period t

panel data model equals, in the MPH setting,

fθ(yt|xt, yt−1, a) = λα (yt) exp (γyt−1 + x′tβ + a) exp (−ρθ (zt) ea) .

Further recall the notation: Pt = ρθ (Zt) = Λα (Yt) e
γYt−1+X′

tβ (when evaluated at population

value θ = θ0). The (submodel) score for θ equals

Sθ(Y T , XT ) = E

[
T∑
t=1

∂ ln fθ(Yt |Yt−1, Xt, A)

∂θ
|Y T , XT

]
.

By Theorem 4.1 and Lemma C.3 the efficient score, when T = 2, equals

ϕeff
θ (Y 2, X2) = E

[
Sθ(Y 2, X2) |Y0, P̃1, P ,X1

]
− E

[
Sθ(Y 2, X2) |Y0, P ,X1

]
, (69)

while, in the general T ≥ 2 case, it equals

ϕeff
θ (Y T , XT ) =

T−1∑
t=1

ϕeff,⊥
θ,t (Y0, P̃

1:t, P ,X1:t),

with, for t = 1, . . . , T − 1,

ϕeff,⊥
θ,t (Y0, P̃

1:t, P ,X1:t)

= E
[
Sθ(Y T , XT )|Y0, P̃ 1:t, P ,X1:t

]
− E

[
Sθ(Y T , XT )|Y0, P̃ 1:t−1, P ,X1:t

]
. (70)

In what follows we focus on the T = 2 special case for simplicity (and because it is this case we

study in the numerical experiments reported in Section 5 of the main text). The calculations

proceed by evaluating – and simplifying as far as appears to be feasible – equation (69)

above. We do this separately for β, γ and α. Our efficient score expression for β holds for

any baseline hazard, those we present for γ and α assume that the baseline hazard takes the

Weibull form: λα(yt) = αyα−1
t . The calculations presented below can be adapted to study

semiparametric efficiency bounds under other maintained baseline hazard assumptions.

The efficient score for β: The (submodel) score for β, recalling the notation re-
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established immediately above, equals:

Sβ(Y T , XT ) = E

[
T∑
t=1

∂ ln fθ(Yt |Yt−1, Xt, A)

∂β
|Y T , XT

]
(71)

= E

[
T∑
t=1

Xt (1− Pte
a) |Y T , XT

]

=
T∑
t=1

Xt −
T∑
t=1

XtPtE
[
eA |Y T , XT

]
,

which, when T = 2, coincides with

Sβ(Y 2, X2) = X1 +X2 − (X1P1 +X2P2)E
[
eA |Y 2, X2

]
.

Reparameterizing in terms of P̃1 and P yields the equivalent expression

Sβ(Y 2, X2) = X1 +X2 −
(
X1P̃1P +X2(1− P̃1)P

)
E
[
eA |Y0, P̃1, P ,X

2
]
.

The efficient score for β, from equation (69) above, equals

ϕeff,β
θ (Y 2, X2) = E

[
Sβ(Y 2, X2)|Y0, P̃1, P ,X1

]
− E

[
Sβ(Y 2, X2)|Y0, P ,X1

]
. (72)

We evaluate the two expectations to the right of the equality above in sequence. First,

E
[
Sβ(Y 2, X2)|Y0, P̃1, P ,X1

]
= X1 + E

[
X2|Y0, P̃1, P ,X1

]
−X1P̃1PE

[
eA |Y0, P ,X1

]
− (1− P̃1)PE

[
X2e

A |Y0, P̃1, P ,X1

]
.

Second, and making use of Lemma C.2 when evaluating expectations over P̃1,

E
[
Sβ(Y 2, X2)|Y0, P ,X1

]
= X1 + E

[
X2|Y0, P ,X1

]
−X1PE

[
P̃1e

A |Y0, P ,X1

]
− PE

[
X2(1− P̃1)e

A |Y0, P ,X1

]
= X1 + E

[
X2|Y0, P ,X1

]
− 1

2
X1PE

[
eA |Y0, P ,X1

]
− PE

[
X2(1− P̃1)e

A |Y0, P ,X1

]
.
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Collecting terms we get an efficient score for β of

ϕeff,β
θ (Y 2, X2) = −X1

(
P̃1 −

1

2

)
PE

[
eA |Y0, P ,X1

]
+ E

[
X2|Y0, P̃1, P ,X1

]
− E

[
X2|Y0, P ,X1

]
−
(
(1− P̃1)E

[
X2e

A |Y0, P̃1, P ,X1

]
− E

[
X2(1− P̃1)e

A |Y0, P ,X1

])
P ,

or more concisely

ϕeff,β
θ (Y 2, X2) =−X1

(
P̃1 −

1

2

)
PE

[
eA |Y0, P ,X1

]
+ E

[
X2

(
1− (1− P̃1)Pe

A
)
|Y0, P̃1, P ,X1

]
− E

[
X2

(
1− (1− P̃1)Pe

A
)
|Y0, P ,X1

]
, (73)

as claimed in Section 5.

The efficient score for γ: The (submodel) score for γ equals:

Sγ(Y T , XT ) = E

[
T∑
t=1

∂ ln fθ(Yt |Yt−1, Xt, A)

∂γ
|Y T , XT

]

= E

[
T∑
t=1

Yt−1 (1− Pte
a) |Y T , XT

]

=
T∑
t=1

Yt−1 −
T∑
t=1

Yt−1PtE
[
eA |Y T , XT

]
,

which, when T = 2, coincides with

Sγ(Y 2, X2) = Y0 + Y1 − (Y0P1 + Y1P2)E
[
eA |Y 2, X2

]
,

or, after reparameterization in terms of (P̃1, P ), with

Sγ(Y 2, X2) = Y0 + Y1 −
(
Y0P̃1P + Y1(1− P̃1)P

)
E
[
eA |Y0, P̃1, P ,X

2
]
.

The efficient score for γ, from equation (69) above, equals

ϕeff,γ
θ (Y 2, X2) = E

[
Sγ(Y 2, X2)|Y0, P̃1, P ,X1

]
− E

[
Sγ(Y 2, X2)|Y0, P ,X1

]
, (74)
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where evaluate the first expectation to the right of equality as

E
[
Sγ(Y 2, X2)|Y0, P̃1, P ,X1

]
= Y0 + Y1 −

(
Y0P̃1P + Y1(1− P̃1)P

)
E
[
eA |Y0, P̃1, P ,X1

]
= Y0 + Y1 −

(
Y0P̃1P + Y1(1− P̃1)P

)
E
[
eA |Y0, P ,X1

]
,

using the fact that P̃1 ⊥ (A,P )|X0, Y1 (see Lemma C.2 above).

In order to evaluate the second expectation entering the efficient score for γ we consider

the special case of a Weibull baseline hazard: Λα(yt) = yαt , λα(yt) = αyα−1
t . This hazard

implies the convenient relation Y1 = P
1
α
1 e

−X′
1
β
α
− γ

α
Y0 = P̃

1
α
1 P

1
α e−X′

1
β
α
− γ

α
Y0 . This allows us to

use Lemma C.2 to evaluate the expectation:

E
[
Y1|Y0, P ,X1

]
= e−X′

1
β
α
− γ

α
Y0E

[
P̃

1
α
1 |Y0, P ,X1

]
P

1
α

=
α

1 + α
e−X′

1
β
α
− γ

α
Y0P

1
α ,

where we have used the fact that P̃1 ∼ U [0, 1] = Beta (1, 1). Proceeding in the same general

way we also get

E
[
Y1(1− P̃1)|Y0, P ,X1

]
= e−X′

1
β
α
− γ

α
Y0E

[
P̃

1
α
1 (1− P̃1)|Y0, P ,X1

]
P

1
α

=

(
α

1 + α
− α

1 + 2α

)
e−X′

1
β
α
− γ

α
Y0P

1
α .

Using these two results we evaluate the second expectation in equation (74) as:

E
[
Sγ(Y 2, X2)|Y0, P ,X1

]
= Y0 + E

[
Y1|Y0, P ,X1

]
−
(
Y0E

[
P̃1|Y0, P ,X1

]
+ E

[
Y1(1− P̃1)|Y0, P ,X1

])
PE

[
eA |Y0, P ,X1

]
= Y0 +

α

1 + α
e−X′

1
β
α
− γ

α
Y0P

1
α

−
(
Y0

1

2
+

(
α

1 + α
− α

1 + 2α

)
e−X′

1
β
α
− γ

α
Y0P

1
α

)
PE

[
eA |Y0, P ,X1

]
.

Collecting terms yields an efficient score for γ of:

ϕeff,γ
θ (Y 2, X2)(P̃1, P ,X1) = Y1 −

α

1 + α
e−X′

1
β
α
− γ

α
Y0P

1
α

−
(
Y0

(
P̃1 −

1

2

)
+

(
Y1(1− P̃1)−

(
α

1 + α
− α

1 + 2α

)
e−X′

1
β
α
− γ

α
Y0P

1
α

))
× PE

[
eA |Y0, P ,X1

]
. (75)
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This expression does not appear in the main text.

The efficient score for α: The (submodel) score for α equals:

Sα(Y T , XT ) = E

[
T∑
t=1

∂ ln fθ(Yt |Yt−1, Xt, A)

∂α
|Y T , XT

]

= E

[
T∑
t=1

∂ lnλα(Yt)

∂α
− ∂ ln Λα(Yt)

∂α
Pte

A |Y T , XT

]

=
T∑
t=1

∂ lnλα(Yt)

∂α
−

T∑
t=1

∂ ln Λα(Yt)

∂α
PtE

[
eA |Y T , XT

]
,

which, when T = 2, equals (after reparameterization in terms of P̃1, P ):

Sα(Y 2, X2) =
∂ lnλα(Y1)

∂α
+
∂ lnλα(Y2)

∂α

−
(
∂ ln Λα(Y1)

∂α
P̃1 +

∂ ln Λα(Y2)

∂α
× (1− P̃1)

)
PE

[
eA |Y0, P̃1, P ,X1, X2

]
,

and the efficient score for α, from equation (69) above, equals

ϕeff,α
θ (Y 2, X2) = E

[
Sα(Y 2, X2)|Y0, P̃1, P ,X1

]
− E

[
Sα(Y 2, X2)|Y0, P ,X1

]
. (76)

To make further progress we again consider the Weibull baseline hazard case; implying

lnΛα(Yt) = α lnYt and lnλα(Yt) = lnα + (α− 1) lnYt. This yields

∂ ln Λα(Yt)

∂α
= lnYt

∂ lnλα(Yt)

∂α
=

1

α
+ lnYt.

In the parameterization P̃1, P , with Y1 = P
1
α
1 e

−X′
1
β
α
− γ

α
Y0 = P̃

1
α
1 P

1
α e−X′

1
β
α
− γ

α
Y0 and Y2 = (1 −

P̃1)
1
αP

1
α e−X′

1
β
α
− γ

α
Y0 we have

∂ ln Λα(Y1)

∂α
= lnY1 = − 1

α
(X ′

1β + γY0) +
1

α
ln P̃1 +

1

α
lnP

∂ ln Λα(Y2)

∂α
= lnY2 = − 1

α
(X ′

2β + γY1) +
1

α
ln
(
1− P̃1

)
+

1

α
lnP

= − 1

α

(
X ′

2β + γP̃
1
α
1 P

1
α e−X′

1
β
α
− γ

α
Y0

)
+

1

α
ln
(
1− P̃1

)
+

1

α
lnP ,
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and

∂ lnλα(Y1)

∂α
=

1

α
− 1

α
(X ′

1β + γY0) +
1

α
ln P̃1 +

1

α
lnP

∂ lnλα(Y2)

∂α
=

1

α
− 1

α

(
X ′

2β + γP̃
1
α
1 P

1
α e−X′

1
β
α
− γ

α
Y0

)
+

1

α
ln
(
1− P̃1

)
+

1

α
lnP .

The following implications of Lemma C.2 are useful for the calculations which follow: P̃1 ⊥
P |Y0, X1 with P̃1 ∼ U [0, 1] and hence, by the properties of the uniform distribution, − ln P̃1 ∼
Exp (1). Using these facts we evaluate the following four expectations:

E
[
− ln

(
1− P̃1

)
|Y0, P ,X1

]
= E

[
− ln

(
1− P̃1

)
|Y0, X1

]
= E

[
− ln P̃1|Y0, X1

]
= +1

E
[
P̃

1
α
1 |Y0, P ,X1

]
=

α

α + 1

E
[
P̃

1
α
1 (1− P̃1)|Y0, P ,X1

]
=

(
α

1 + α
− α

1 + 2α

)
E
[
ln P̃1P̃1|Y0, P ,X1

]
= −1

4
.

Using these calculations we can then evaluate the various conditional expectations in the

efficient score expression. We start with

E
[
∂ lnλα(Y1)

∂α
|Y0, P̃1, P ,X1

]
=

1

α
− 1

α
(X ′

1β + γY0) +
1

α
ln P̃1 +

1

α
lnP ,

and

E
[
∂ lnλα(Y1)

∂α
|Y0, P ,X1

]
=

1

α
− 1

α
(X ′

1β + γY0)−
1

α
E
[
− ln P̃1|Y0, P ,X1

]
+

1

α
lnP

= − 1

α
(X ′

1β + γY0) +
1

α
lnP ,

which together give

E
[
∂ lnλα(Y1)

∂α
|Y0, P̃1, P ,X1

]
− E

[
∂ lnλα(Y1)

∂α
|Y0, P ,X1

]
=

1

α
+

1

α
ln P̃1.

Second we evaluate

E
[
∂ lnλα(Y2)

∂α
|Y0, P̃1, P ,X1

]
=
1

α
− 1

α

(
E
[
X2|Y0, P̃1, P ,X1

]′
β + γP̃

1
α
1 P

1
α e−X′

1
β
α
− γ

α
Y0

)
+

1

α
ln
(
1− P̃1

)
+

1

α
lnP ,
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and

E
[
∂ lnλα(Y2)

∂α
|Y0, P ,X1

]
=

1

α
− 1

α

(
E
[
X2|Y0, P ,X1

]′
β + γE

[
P̃

1
α
1 |Y0, P ,X1

]
P

1
α e−X′

1
β
α
− γ

α
Y0

)
− 1

α
E
[
− ln

(
1− P̃1

)
|Y0, P ,X1

]
+

1

α
lnP

= − 1

α

(
E
[
X2|Y0, P ,X1

]′
β + γ

α

1 + α
P

1
α e−X′

1
β
α
− γ

α
Y0

)
+

1

α
lnP ,

which together yield:

E
[
∂ lnλα(Y2)

∂α
|Y0, P̃1, P ,X1

]
− E

[
∂ lnλα(Y2)

∂α
|Y0, P ,X1

]
=

1

α
− 1

α

(
E
[
X2|Y0, P̃1, P ,X1

]
− E

[
X2|Y0, P ,X1

])′
β

− γ

α

(
P̃

1
α
1 − α

1 + α

)
P

1
α e−X′

1
β
α
− γ

α
Y0 +

1

α
ln
(
1− P̃1

)
.

Collecting the results so far, we have that the first part of the efficient score, equation (76),

equal to:

2

α
+

1

α
ln P̃1 +

1

α
ln
(
1− P̃1

)
− γ

α

(
P̃

1
α
1 − α

1 + α

)
P

1
α e−X′

1
β
α
− γ

α
Y0

− 1

α

(
E
[
X2|Y0, P̃1, P ,X1

]
− E

[
X2|Y0, P ,X1

])′
β.

To find the form of the second part of the efficient score we need to evaluate several

additional conditional expectations. We begin with the pair of conditional expectations,

using the expression for ∂ ln Λα(Y1)
∂α

presented above,

E
[
∂ ln Λα(Y1)

∂α
P̃1PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P̃1, P ,X1

]
= E

[(
− 1

α
(X ′

1β + γY0) +
1

α
ln P̃1 +

1

α
lnP

)
P̃1PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P̃1, P ,X1

]
=

(
− 1

α
(X ′

1β + γY0) P̃1P +
1

α
ln P̃1P̃1P +

1

α
P̃1P lnP

)
E
[
eA |Y0, P ,X1

]
,
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and also

E
[
∂ ln Λα(Y1)

∂α
P̃1PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P ,X1

]
= − 1

α
(X ′

1β + γY0)E
[
P̃1e

A |Y0, P ,X1

]
P +

1

α
E
[
ln P̃1P̃1e

A |Y0, P ,X1

]
P

+
1

α
E
[
P̃1e

A |Y0, P ,X1

]
P lnP

=

(
− 1

α
(X ′

1β + γY0)
1

2
P − 1

α

1

4
P +

1

α

1

2
P lnP

)
E
[
eA |Y0, P ,X1

]
.

Together this yields a difference of expectations equal to

E
[
∂ ln Λα(Y1)

∂α
P̃1PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P̃1, P ,X1

]
− E

[
∂ ln Λα(Y1)

∂α
P̃1PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P ,X1

]
=

(
− 1

α
(X ′

1β + γY0)

(
P̃1 −

1

2

)
+

1

α

(
ln P̃1P̃1 +

1

4

)
+

1

α

(
P̃1 −

1

2

)
lnP

)
× PE

[
eA |Y0, P ,X1

]
.

Next we evaluate, using the expression for ∂ ln Λα(Y2)
∂α

given earlier,

E
[
∂ ln Λα(Y2)

∂α
× (1− P̃1)PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P̃1, P ,X1

]
=E

[(
− 1

α

(
X ′

2β + γP̃
1
α
1 P

1
α e−X′

1
β
α
− γ

α
Y0

)
+

1

α
ln
(
1− P̃1

)
+

1

α
lnP

)
(1− P̃1)P

×E
[
eA |Y0, P̃1, P ,X

2
]
|Y0, P̃1, P ,X1

]
=− 1

α
E
[
X2e

A |Y0, P̃1, P ,X1

]′
β(1− P̃1)P

− γ

α
P̃

1
α
1 P

1
α e−X′

1
β
α
− γ

α
Y0(1− P̃1)PE

[
eA |Y0, P ,X1

]
+

1

α
ln
(
1− P̃1

)
(1− P̃1)PE

[
eA |Y0, P ,X1

]
+

1

α
(1− P̃1)P lnPE

[
eA |Y0, P ,X1

]
.
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We also require:

E
[
∂ ln Λα(Y2)

∂α
× (1− P̃1)PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P ,X1

]
=− 1

α
E
[
(1− P̃1)X2e

A |Y0, P ,X1

]′
βP

− γ

α
P

1
α e−X′

1
β
α
− γ

α
Y0PE

[
P̃

1
α
1 (1− P̃1)e

A |Y0, P̃1, P ,X1

]
+

1

α
PE

[
ln
(
1− P̃1

)
(1− P̃1)e

A |Y0, P ,X1

]
+

1

α
P lnPE

[
(1− P̃1)e

A |Y0, P ,X1

]
,

which, after further simplification using Lemma C.2, equals

E
[
∂ ln Λα(Y2)

∂α
× (1− P̃1)PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P ,X1

]
=− 1

α
E
[
(1− P̃1)X2e

A |Y0, P ,X1

]′
βP

− γ

α
P

1
α e−X′

1
β
α
− γ

α
Y0P

(
α

1 + α
− α

1 + 2α

)
E
[
eA |Y0, P ,X1

]
− 1

α

1

4
PE

[
eA |Y0, P ,X1

]
+

1

α

1

2
P lnPE

[
eA |Y0, P ,X1

]
.

Putting these last two expectation evaluations together yields a difference of:

E
[
∂ ln Λα(Y2)

∂α
× (1− P̃1)PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P̃1, P ,X1

]
− E

[
∂ ln Λα(Y2)

∂α
× (1− P̃1)PE

[
eA |Y0, P̃1, P ,X

2
]
|Y0, P ,X1

]
=− 1

α

(
(1− P̃1)E

[
X2e

A |Y0, P̃1, P ,X1

]
− E

[
(1− P̃1)X2e

A |Y0, P ,X1

])′
βP

− γ

α
e−X′

1
β
α
− γ

α
Y0

(
P̃

1
α
1 (1− P̃1)−

(
α

1 + α
− α

1 + 2α

))
P

1
αPE

[
eA |Y0, P ,X1

]
+

1

α

(
ln
(
1− P̃1

)
(1− P̃1) +

1

4

)
PE

[
eA |Y0, P ,X1

]
+

1

α

(
(1− P̃1)−

1

2

)
P lnPE

[
eA |Y0, P ,X1

]
.
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Hence the second component of the efficient score is given by (minus):

− 1

α
(X ′

1β + γY0)

(
P̃1 −

1

2

)
PE

[
eA |Y0, P ,X1

]
+

1

α

(
ln P̃1P̃1 +

1

4

)
PE

[
eA |Y0, P ,X1

]
+

1

α

(
P̃1 −

1

2

)
lnPPE

[
eA |Y0, P ,X1

]
+

1

α

(
(1− P̃1)−

1

2

)
P lnPE

[
eA |Y0, P ,X1

]
+

1

α

(
ln
(
1− P̃1

)
(1− P̃1) +

1

4

)
PE

[
eA |Y0, P ,X1

]
− γ

α
e−X′

1
β
α
− γ

α
Y0

(
P̃

1
α
1 (1− P̃1)−

(
α

1 + α
− α

1 + 2α

))
P

1
αPE

[
eA |Y0, P ,X1

]
− 1

α

(
(1− P̃1)E

[
X2e

A |Y0, P̃1, P ,X1

]
− E

[
(1− P̃1)X2e

A |Y0, P ,X1

])′
βP ,

which, after some manipulation, simplifies to

− 1

α
(X ′

1β + γY0)

(
P̃1 −

1

2

)
PE

[
eA |Y0, P ,X1

]
+

1

α

(
ln P̃1P̃1 +

1

4

)
PE

[
eA |Y0, P ,X1

]
+

1

α

(
ln
(
1− P̃1

)
(1− P̃1) +

1

4

)
PE

[
eA |Y0, P ,X1

]
− γ

α
e−X′

1
β
α
− γ

α
Y0

(
P̃

1
α
1 (1− P̃1)−

(
α

1 + α
− α

1 + 2α

))
P

1
αPE

[
eA |Y0, P ,X1

]
− 1

α

(
(1− P̃1)E

[
X2e

A |Y0, P̃1, P ,X1

]
− E

[
(1− P̃1)X2e

A |Y0, P ,X1

])′
βP .

We want minus of the former to form the effcient score, so (and also collecting terms)

+
1

α
(X ′

1β + γY0)

(
P̃1 −

1

2

)
PE

[
eA |Y0, P ,X1

]
− 1

α

(
ln P̃1P̃1 +

1

4
+ ln

(
1− P̃1

)
(1− P̃1) +

1

4

)
PE

[
eA |Y0, P ,X1

]
+
γ

α
e−X′

1
β
α
− γ

α
Y0

(
P̃

1
α
1 (1− P̃1)−

(
α

1 + α
− α

1 + 2α

))
P

1
αPE

[
eA |Y0, P ,X1

]
+

1

α

(
(1− P̃1)E

[
X2e

A |Y0, P̃1, P ,X1

]
− E

[
(1− P̃1)X2e

A |Y0, P ,X1

])′
βP .
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Putting everything together, the efficient score for α equals:

ϕeff,α
θ (Y 2, X2) =

2

α
+

1

α
ln P̃1 +

1

α
ln
(
1− P̃1

)
− γ

α

(
P̃

1
α
1 − α

1 + α

)
P

1
α e−X′

1
β
α
− γ

α
Y0

− 1

α

(
E
[
X2|Y0, X1, P̃1, P

]
− E

[
X2|Y0, X1, P

])′
β

+
1

α
(X ′

1β + γY0)

(
P̃1 −

1

2

)
PE

[
eA |Y0, P ,X1

]
− 1

α

(
ln P̃1P̃1 +

1

4
+ ln

(
1− P̃1

)
(1− P̃1) +

1

4

)
PE

[
eA |Y0, P ,X1

]
+
γ

α
e−X′

1
β
α
− γ

α
Y0

(
P̃

1
α
1 (1− P̃1)−

(
α

1 + α
− α

1 + 2α

))
P

1
αPE

[
eA |Y0, P ,X1

]
+

1

α

(
(1− P̃1)E

[
X2e

A |Y0, P̃1, P ,X1

]
− E

[
(1− P̃1)X2e

A |Y0, P ,X1

])′
βP .

Close inspection of the expression above indicates that it includes linear combinations of the

efficient scores for β and γ as components. This observation, as well as simplification and

rearrangement, gives a final expression of:

ϕeff,α
θ (Y 2, X2) =

1

α

(
2 + ln P̃1 + ln

(
1− P̃1

))
− 1

α

(
P̃1 ln P̃1 + (1− P̃1) ln

(
1− P̃1

)
+

1

2

)
PE

[
eA |Y0, P ,X1

]
− ϕeff,β

θ (Y 2, X2)′
β

α
− ϕeff,γ

θ (Y 2, X2)
γ

α
. (77)

Like its counterpart for γ this expression does note appear in the main text.

C.3.2 MPH efficient score without feedback (i.e., under strict exogeneity)

Hahn (1994) derived the SEB for the MPH hazards model with T = 2 and strictly exogenous

regressors. His analysis did not include lagged duration dependence, as ours does. For

completeness, we sketch the derivation of the efficient scores for α, β and γ under strict

exogeneity here. Details can be filled in along the lines of our derivation for the scores with

feedback and/or by studying the rigorous analysis in Hahn (1994).

By direct analogy, the efficient score when T = 2 under strict exogeneity equals

ϕeff,SE
θ (Y 2, X2) = E

[
Sθ(Y 2, X2) |Y0, P̃1, P ,X

2
]
− E

[
Sθ(Y 2, X2) |Y0, P ,X2

]
.

It follows that the expressions for the scores are the same as those derived above under

feedback except that each expectation now conditions on all “leads and lags” of the strictly

70



exogenous covariates.

This yields an efficient score for β of

ϕeff,SE,β
θ (Y 2, X2) = (X2 −X1)

(
P̃1 −

1

2

)
PE

[
eA |Y0, P ,X2

]
. (78)

This expression is identical to the one found by Hahn (1994).

Maintaining the Weibull baseline hazard assumption, the efficient score for γ equals:

ϕeff,SE,γ
θ (Y 2, X2) = Y1 −

α

1 + α
e−X′

1
β
α
− γ

α
Y0P

1
α

−
(
Y0

(
P̃1 −

1

2

)
+

(
Y1(1− P̃1)−

(
α

1 + α
− α

1 + 2α

)
e−X′

1
β
α
− γ

α
Y0P

1
α

))
× PE

[
eA |Y0, P ,X2

]
. (79)

The analysis of Hahn (1994) did not accomodate lagged duration dependence. The expression

above is therefore new.

Finally, the efficient score for α equals:

ϕeff,SE,α
θ (Y 2, X2) =

1

α

(
2 + ln P̃1 + ln

(
1− P̃1

))
(80)

− 1

α

(
P̃1 ln P̃1 + (1− P̃1) ln

(
1− P̃1

)
+

1

2

)
PE

[
eA |Y0, P ,X2

]
− ϕeff,SE,β

θ (Y 2, X2)′
β

α
− ϕeff,SE,γ

θ (Y 2, X2)
γ

α
.

This expression coincides exactly with the one given in Lemma 3 of Hahn (1994) except that

his formulation maintains the additional a priori restriction γ = 0. Setting γ = 0 in the

expression above yields Hahn’s expression.

C.3.3 MPH efficient score for average effects

Lemma C.3 can also be used to derive expressions for the efficient score of average effects

µ(θ, ω).

Average structural hazard. Consider first the ASH λ(yt|xt, yt−1) defined in (22). In the

main text, we showed that φθ(Y
T , XT ) = λα(yt)e

x′
tβ+γyt−1 T−1

P
is an identifying FHR moment

function for λ(yt|xt, yt−1). Applying Lemma C.3 yields the projection

Π(φθ(Y
T , XT )|T ⊥

θ,ω,L) =
T−1∑
t=1

φ⊥
θ,t(Y0, P̃

t, P ,X t) = 0,
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since, for all t ∈ {1, . . . , T − 1},

φ⊥
θ,t(Y0, P̃

t, P ,X t) = E
[
φθ(Y

T , XT )|Y0, P̃ t, P ,X t
]
− E

[
φθ(Y

T , XT )|Y0, P̃ t−1, P ,X t
]

= λα(yt)e
x′
tβ+γyt−1

T − 1

P
− λα(yt)e

x′
tβ+γyt−1

T − 1

P

= 0.

This verifies the claim in Section 5. Recalling from Section 4.1 that the efficient score is given

by φeff
θ,ω(Y

T , XT ) = φθ(Y
T , XT )−Π(φθ(Y

T , XT ) | T ⊥
θ,ω,L), we conclude that the efficient score

for the ASH is

φeff
θ,ω(Y

T , XT ) = λα(yt)e
x′
tβ+γyt−1

T − 1

P
.

Average structural function. As a second example, consider the ASF µ(xt, yt−1) defined

in (23). Under a Weibull baseline hazard, it takes the form

µ(xt, yt−1) = Γ

(
1 +

1

α

)
exp

(
−x′t

β

α
− γ

α
yt−1

)
E
[
exp
(
− a

α

)]
.

In view of (28), one candidate identifying moment function is

φθ(Y
T , XT ) = exp

(
−x′t

β

α
− γ

α
yt−1

)
Γ
(
1 + 1

α

)
Γ(T )

Γ(T + 1
α
)

P
1
α .

Applying Lemma C.3, we again get Π(φθ(Y
T , XT )|T ⊥

θ,ω,L) = 0, which implies that the efficient

score for the ASF is given by

φeff
θ,ω(Y

T , XT ) = exp

(
−x′t

β

α
− γ

α
yt−1

)
Γ
(
1 + 1

α

)
Γ(T )

Γ(T + 1
α
)

P
1
α . (81)

Alternatively, based on (17), one could for example consider the FHR moment function

φ2
θ0
(Y T , XT ) = Γ

(
1 +

1

α

)
exp

(
−x′t

β

α
− γ

α
yt−1

)
P

1
α
1 ,

noting that E
[
P

1
α
1 |Y0, X1, A

]
= E

[
exp
(
− a

α

)]
. For this choice, the identity P1 = P̃1P and an
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application of Lemma C.3 yields

Π(φ2
θ(Y

T , XT )|T ⊥
θ,ω,L) = Γ

(
1 +

1

α

)
exp

(
−x′t

β

α
− γ

α
yt−1

)(
P̃

1
α
1 P

1
α − E

[
P̃

1
α
1 |Y0, P ,X1

]
P

1
α

)
= Γ

(
1 +

1

α

)
exp

(
−x′t

β

α
− γ

α
yt−1

)(
P̃

1
α
1 P

1
α −

Γ
(
1 + 1

α

)
Γ(T )

Γ(T + 1
α
)

P
1
α

)

= φ2
θ(Y

T , XT )− Γ

(
1 +

1

α

)
exp

(
−x′t

β

α
− γ

α
yt−1

)
Γ
(
1 + 1

α

)
Γ(T )

Γ(T + 1
α
)

P
1
α ,

where the second equality leverages the distributional properties reported in Lemma (C.2).

The projection residual would then deliver the same expression of the efficient score as (81).

This aligns with the result discussed in Section 4.1 that the efficient score for average effects

is invariant to the specific choice of φθ.

C.4 Detailed calculations

Derivation of equation (64): Using the inverse mapping defined in Appendix C we can

write the (determinant of the) Jacobian of the mapping from V back into P as:

J (T )(V1, . . . , VT ) =

∣∣∣∣∣∣∣∣∣
VT 0 0 ... 0 V1

−V2VT (1−V1)VT 0 0 ... (1−V1)V2

−(1−V2)V3VT −(1−V1)V3VT (1−V1)(1−V2)VT 0 ... (1−V1)(1−V2)V3

...
...

...
...

...
...

−
∏T−2

s=2 (1−Vs)VT−1VT ... ...
∏T−2

s=1 (1−Vs)VT
∏T−2

s=1 (1−Vs)VT−1

−
∏T−1

s=2 (1−Vs)VT ... ... −
∏T−2

s=1 (1−Vs)VT
∏T−1

s=1 (1−Vs)

∣∣∣∣∣∣∣∣∣
A Laplace (co-factor) expansion along the first row gives

J (T )(V1, . . . , VT ) = VT

∣∣∣∣∣∣∣∣
(1−V1)VT 0 0 ... (1−V1)V2

−(1−V1)V3VT (1−V1)(1−V2)VT 0 ... (1−V1)(1−V2)V3

...
...

...
...

...
−(1−V1)

∏T−2
s=3 (1−Vs)VT−1VT ...

∏T−2
s=1 (1−Vs)VT

∏T−2
s=1 (1−Vs)VT−1

−(1−V1)
∏T−1

s=3 (1−Vs)VT ... −
∏T−2

s=1 (1−Vs)VT
∏T−1

s=1 (1−Vs)

∣∣∣∣∣∣∣∣
+ (−1)T+1V1

∣∣∣∣∣∣∣∣
−V2VT (1−V1)VT 0 0

−(1−V2)V3VT −(1−V1)V3VT (1−V1)(1−V2)VT 0

...
...

...
...

−
∏T−2

s=2 (1−Vs)VT−1VT ... ...
∏T−2

s=1 (1−Vs)VT

−
∏T−1

s=2 (1−Vs)VT ... ... −
∏T−2

s=1 (1−Vs)VT

∣∣∣∣∣∣∣∣
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and further factorizing common factors across columns yields

J (T )(V1, . . . , VT ) = VT (1− V1)
T−1

∣∣∣∣∣∣∣∣
VT 0 0 ... V2

−V3VT (1−V2)VT 0 ... (1−V2)V3

...
...

...
...

...
−

∏T−2
s=3 (1−Vs)VT−1VT ...

∏T−2
s=2 (1−Vs)VT

∏T−2
s=2 (1−Vs)VT−1

−
∏T−1

s=3 (1−Vs)VT ... −
∏T−2

s=2 (1−Vs)VT
∏T−1

s=2 (1−Vs)

∣∣∣∣∣∣∣∣

+ (−1)TV1(1− V1)
T−2VT

∣∣∣∣∣∣∣∣
V2 VT 0 0

(1−V2)V3 −V3VT (1−V2)VT 0

...
...

...
...∏T−2

s=2 (1−Vs)VT−1 ... ...
∏T−2

s=2 (1−Vs)VT∏T−1
s=2 (1−Vs) ... ... −

∏T−2
s=2 (1−Vs)VT

∣∣∣∣∣∣∣∣ .
Observe that the matrices involved in the first and second determinants have the same set

of columns. More specifically, the second matrix can be obtained by swapping
⌊
T
2

⌋
pairs of

columns in the first matrix, implying that the determinant of the second matrix is (−1)⌊
T
2 ⌋

that of the first matrix.

Next observe that the first determinant has exactly the same structure as J (T )(V1, . . . , VT ),

except that it involves T − 1 variables instead of T variables, namely (V2, . . . , VT ) instead of

(V1, . . . , VT ). More precisely, this determinant coincides with J (T−1)(V2, . . . , VT ).

Together, these observations imply that:

J (T )(V1, . . . , VT ) = VT (1− V1)
T−1J (T−1)(V2, . . . , VT ) + (−1)T+⌊T

2 ⌋V1(1− V1)
T−2VTJ

(T−1)(V2, . . . , VT )

= (1− V1)
T−2VTJ

(T−1)(V2, . . . , VT )

= (1− V1)
T−2VT (1− V2)

T−3VTJ
(T−2)(V3, . . . , VT )

= (1− V1)
T−2VT (1− V2)

T−3VT × . . .× (1− VT−2)VTJ
(2)(VT−1, VT )

= (1− V1)
T−2VT (1− V2)

T−3VT × . . .× (1− VT−2)VTVT

= V T−1
T

T−2∏
s=1

(1− Vs)
T−(s+1),

which coincides with (64) as required.

Derivation of equation (65) The change-of-variables formula, in conjunction with the
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determinant given in (64), yields

fV (V1, V2, . . . , VT ) =fP1 (V1VT )
T−1∏
t=2

fPt

(
t−1∏
s=1

(1− Vs)VtVT

)
fPT

(
t−1∏
s=1

(1− Vs)VT

)∣∣∣∣det [dG−1(V)

dV

]∣∣∣∣
=

βα1

Γ(α1)
(V1VT )

α1−1e−βV1VT

×
T−1∏
t=2

βαt

Γ(αt)

(
t−1∏
s=1

(1− Vs)VtVT

)αt−1

e−β
∏t−1

s=1(1−Vs)VtVT

× βαT

Γ(αT )

(
T−1∏
s=1

(1− Vs)VT

)αt−1

e−β
∏T−1

s=1 (1−Vs)VT

× V T−1
T

T−2∏
s=1

(1− Vs)
T−(s+1)

=
β
∑T

t=1 αt

Γ(αT )
V

∑T
t=1 αt−1

T e−βVT

× 1

Γ(α1)
V α1−1
1 (1− V1)

∑T
t=2 αt−(T−1)+(T−(1+1))

× 1

Γ(α2)
V α2−1
2 (1− V2)

∑T
t=3 αt−(T−2)+(T−(2+1))

...

× 1

Γ(αT−1)
V

αT−1−1
T−1 (1− VT−1)

∑T
t=T−1 αt−(T−(T−1))

=
β
∑T

t=1 αt

Γ
(∑T

t=1 αt

)V∑T
t=1 αt−1

T e−βVT

×
T−1∏
t=1

Γ
(∑T

s=t αs

)
Γ (αt) Γ

(∑T
s=t+1 αs

)V αt−1
t (1− Vt)

∑T
s=t+1 αs−1,

where the simplification on the penultimate equality follows from:

VT =
T∑
t=1

Pt = V1VT +
t−1∏
s=1

(1− Vs)VtVT +
T−1∏
s=1

(1− Vs)VT .

This corresponds to equation (65) as needed.

D Additional details for the numerical experiments

In this section we again omit the dependence on θ in Pθ and related quantities.
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Lemma D.1. Consider the MPH model defined by Example 1 with T = 2. If there is no

feedback, then (i) P ,X2, P̃1 are independent conditional on Y0, X1, A, and (ii) P̃1 is indepen-

dent of X2, P , A, Y0, X1. If in addition X2 is independent of A conditional on Y0, X1, then

(iii) P ,X2, P̃1 are independent conditional on Y0, X1

Proof. If there is no feedback, (6) and Lemma C.2 imply that the joint density of (P ,X2, P̃1)

conditional on (Y0, X1, A) is given by

f(p, x2, p̃1|y0, x1, a) = p exp (2a− pea)1{p > 0}g(x2|y0, x1, a)1 {p̃1 ∈ (0, 1)} ,

which establishes (i). This also proves that P̃1 ⊥ A, Y0, X1 and hence (ii). IfX2 is independent

of A conditional on Y0, X1, g(x2|y0, x1, a) = g(x2|y0, x1) whereupon the form of the above

joint density imply (iii).

Locally efficient score. The working model in our numerical experiment is ω̃ = (g̃, π̃)

where g̃ is a Bernoulli(p) and π̃(v) = 1
v
1{v > 0} where V = exp(A). Since P |Y0, X1, V ∼

Gamma (T, V ) by Lemma (C.2), it follows from Bayes rule that V |Y0, P ,X1 ∼ Gamma
(
T, P

)
.

Therefore, Eθ,ω̃

[
V |Y0, P ,X1

]
= T

P
. In view of (73), the locally efficient score for β under ω̃

is

ϕ̃eff,β
θ,ω̃ (Y 2, X2) = −X1

(
P̃1 −

1

2

)
PEθ,ω̃

[
V |Y0, P ,X1

]
+ Eθ,ω̃

[
X2|Y0, P̃1, P ,X1

]
− Eθ,ω̃

[
X2(1− P̃1)PV |Y0, P̃1, P ,X1

]
− Eθ,ω̃

[
X2|Y0, P ,X1

]
+ Eθ,ω̃

[
X2(1− P̃1)PV |Y0, P ,X1

]
= −X1

(
P̃1 −

1

2

)
PEθ,ω̃

[
V |Y0, P ,X1

]
+ Eθ,ω̃ [X2|Y0, X1]− (1− P̃1)PEθ,ω̃ [X2|Y0, X1]Eθ,ω̃

[
V |Y0, P ,X1

]
− Eθ,ω̃ [X2|Y0, X1] + PEθ,ω̃ [X2|Y0, X1]Eθ,ω̃

[
(1− P̃1)

]
Eθ,ω̃

[
V |Y0, P ,X1

]
= (p−X1)

(
P̃1 −

1

2

)
T, (82)

where the second equality follows from the implications of Lemma D.1, and the third equality

uses Eθ,ω̃

[
V |Y0, P ,X1

]
= T

P
, Eθ,ω̃

[
P̃1

]
= 1

2
by Lemma C.2, and the definition of g̃. For the

remaining components of the efficient score, we use once more, Eθ,ω̃

[
V |Y0, P ,X1

]
= T

P
and
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obtain

ϕ̃eff,γ
θ,ω̃ (Y 2, X2) = Y1 −

α

1 + α
e−X′

1
β
α
− γ

α
Y0P

1
α

−
(
Y0

(
P̃1 −

1

2

)
+

(
Y1(1− P̃1)−

(
α

1 + α
− α

1 + 2α

)
e−X′

1
β
α
− γ

α
Y0P

1
α

))
T

(83)

from (75), and finally

ϕ̃eff,α
θ,ω̃ (Y 2, X2) =

1

α

(
2 + ln P̃1 + ln

(
1− P̃1

))
− 1

α

(
P̃1 ln P̃1 + (1− P̃1) ln

(
1− P̃1

)
+

1

2

)
T

− ϕ̃eff
β,ω̃(Y

2, X2)′
β

α
− ϕ̃eff

γ,ω̃(Y
2, X2)

γ

α
(84)

from (77).

Implementation details. The asymptotic standard errors reported in Table 1 are ob-

tained via Monte Carlo integration using N = 1, 000, 000 simulation draws from the DGP

of Experiment (A). As a benchmark, we computed the square root of the diagonal elements

of E
[
ϕeff,SE
θ0

(Y 2
i , X

2
i )ϕ

eff,SE
θ0

(Y 2
i , X

2
i )

′
]−1

, which corresponds to the semiparametric efficiency

bound under strict exogeneity. This quantity serves as a reference for the remaining es-

timators, which explains the normalization in the first row. Similarly, the second row dis-

plays the square root of the (normalized) diagonal elements of E
[
ϕeff
θ0
(Y 2

i , X
2
i )ϕ

eff
θ0
(Y 2

i , X
2
i )
]−1

,

i.e the semiparametric efficiency bound with feedback. For the locally efficient estima-

tor and the simple moments approach, we report the (normalized) asymptotic standard

errors using the method-of-moments variance formula: H−1V H−1. In the case of the

locally efficient estimator, the matrices are defined as H = E
[
∂ϕ̃eff

θ0,ω̃
(Y 2

i ,X2
i )

∂θ

]
and V =

E
[
ϕ̃eff
θ0,ω̃

(Y 2
i , X

2
i )ϕ̃

eff
θ0,ω̃

(Y 2
i , X

2
i )

′
]
. For the simple moment-based estimator, we use the same

expressions, replacing ϕ̃eff
θ0,ω̃

(Y 2
i , X

2
i ) with ϕθ0(Y

2
i , X

2
i ).

In Table 2, we follow an analogous procedure with N = 1, 000, 000 simulation draws from

the DGP of Experiment (B) to evaluate population expectations. The main difference is that

we now treat the square root of the diagonal elements of E
[
ϕeff
θ0
(Y 2

i , X
2
i )ϕ

eff
θ0
(Y 2

i , X
2
i )
]−1

as the

benchmark for efficiency comparisons. For the ASH, we report the corresponding asymptotic

77



standard errors for the method of moments estimator

λ̂(yt|xt, yt−1; θ̂) =
1

N

N∑
i=1

φθ̂(Y
2
i , X

2
i ),

where φθ(Y
2
i , X

2
i ) = λα(yt)e

x′
tβ+γyt−1 T−1

P i
. The benchmark in this case is the square root of

the covariance of the efficient influence function for the ASH:

φθ0(Y
2
i , X

2
i ) + E

[
∂φθ0(Y

2
i , X

2
i )

∂θ

]
E
[
ϕeff
θ0
(Y 2

i , X
2
i )ϕ

eff
θ0
(Y 2

i , X
2
i )

′]−1
ϕeff
θ0
(Y 2

i , X
2
i ).

We apply the same strategy for the remaining two estimators, modifying the influence func-

tion accordingly. Specifically, for the estimator based on working models, we use:

φθ0(Y
2
i , X

2
i )− E

[
∂φθ0(Y

2
i , X

2
i )

∂θ

]
E

[
∂ϕ̃eff

θ0,ω̃
(Y 2

i , X
2
i )

∂θ

]−1

ϕ̃eff
θ0,ω̃

(Y 2
i , X

2
i ),

and for the method based on simple moments:

φθ0(Y
2
i , X

2
i )− E

[
∂φθ0(Y

2
i , X

2
i )

∂θ

]
E
[
∂ϕθ0(Y

2
i , X

2
i )

∂θ

]−1

ϕθ0(Y
2
i , X

2
i ).

Finally, in both experiments, we evaluate p = E [X2] via Monte Carlo integration to compute

the locally efficient score for β in equation (82).

Computation of efficient scores. In the absence of feedback, Lemma D.1 and Lemma

C.2 imply that (73) simplifies to

ϕeff,β
θ (Y 2, X2) =

(
P̃1 −

1

2

)
P
(
E
[
X2V |Y0, P ,X1

]
−X1E

[
V |Y0, P ,X1

])
(85)

where V = exp(A). As a result, the efficient score for α in (77) also simplifies. On the other

hand, the efficient score for γ in (75) remains unchanged. To compute the efficient score, we

must evaluate two quantities: E
[
X2V |Y0, P ,X1

]
and E

[
V |Y0, P ,X1

]
. In both numerical ex-

periments V ∼ Gamma(κ0, λ0) where κ0 = λ0 = 5. Given that P |Y0, X1, V ∼ Gamma (T, V )

by Lemma C.2, Bayes rule implies that V |Y0, P ,X1 ∼ Gamma
(
T + κ0, P + λ0

)
and hence

E
[
V |Y0, P ,X1

]
= T+κ0

P+λ0
. Furthermore, the success probability for X2 in Experiment (A)

is p(Y0, Y1, X1, V ) = 1 − exp(−τA(Y0, X1, Y1)V ) with τA(Y0, X1, Y1) = Y0 + X1. Using this
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specification, we derive:

E
[
X2V |Y0, P ,X1

]
=

T + κ0(
λ0 + P

) − (T + κ0)

(
λ0 + P

)T+κ0(
λ0 + P + τA(Y0, X1, Y1)

)T+κ0+1
,

and

E
[
eA|Y0, X1, X2, P

]
= X2

w1

w1 − w2

T + κ0

(λ0 + P )
+

(
(1−X2)−X2

w2

w1 − w2

)
T + κ0

(λ0 + P + τA(Y0, X1, Y1))
,

for w1 =
P

T−1
λ
κ0
0

Γ(T )Γ(κ0)
Γ(T+κ0)

(λ0+P)
T+κ0

, w2 =
P

T−1
λ
κ0
0

Γ(T )Γ(κ0)
Γ(T+κ0)

(λ0+P+τA(Y0,X1,Y1))
T+κ0

. This last expression en-

ables us to compute the efficient score under strict exogeneity given in (78)-(79)-(80) for

Experiment (A).

Equations (73)–(75)–(77) reveal that, in the presence of feedback, computing the efficient

score requires evaluating the following four conditional expectations: E
[
X2|Y0, P̃1, P ,X1

]
,

E
[
X2|Y0, P ,X1

]
, E

[
X2V |Y0, P̃1, P ,X1

]
, E

[
X2(1− P̃1)V |Y0, P̃1, P ,X1

]
. In Experiment

(B), the success probability for X2 is p(Y0, Y1, X1, V ) = 1 − exp(−τB(Y0, X1, Y1)V ) with

τB(Y0, X1, Y1) = Y0 +X1 + Y1. Under this specification, we obtain the following expressions:

E
[
X2|Y0, X1, P̃1, P

]
= 1−

(
λ0 + P

)T+κ0(
λ0 + P + τB(Y0, X1, Y1)

)T+κ0

E
[
X2|Y0, X1, P

]
= 1−

(
λ0 + P

)T+κ0 × 1

C
(T+κ0)
1

× 2F1

(
T + κ0, α; 1 + α;−C2

C1

)

E
[
X2V |Y0, P̃1, P ,X1

]
=
T + κ0

λ0 + P
− (T + κ0)

(
λ0 + P

)T+κ0(
λ0 + P + τB(Y0, X1, Y1)

)T+κ0+1
,

and

E
[
X2(1− P̃1)V |Y0, P ,X1

]
=

1

2

T + κ0

λ0 + P
− (T + κ0)

(
λ0 + P

)T+κ0 ×

1

C
(T+κ0+1)
1

(
2F1

(
T + κ0 + 1, α; 1 + α;−C2

C1

)
− 1

2
× 2F1

(
T + κ0 + 1, 2α; 1 + 2α;−C2

C1

))
,

where we use the shorthands C1 = λ0 + P + Y0 +X1, C2 = P
1
α e−X′

1
β
α
− γ

α
Y0 , and 2F1 (a, b; c; z)
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denotes the hypergeometric function

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt.

E Nonlinear regression: derivation of equation (54)

Let ψθ(y0, y1, x1, a) denote a moment function satisfying (45). Following Corollary 2.1.1, we

search for functions ϕθ satisfying equation (13), i.e.,∫ +∞

−∞
ϕθ(y0, y1, y2, x1, x2) exp

(
− 1

2σ2
(y2 −mβ(y1, x2, a))

)2

dy2 = ψθ(y0, y1, x1, a),

which is a convolution equation. Thus, if we let τ = mβ(y1, x2, a), an application of the

Convolution Theorem yields

F [ϕθ(y0, y1, ., x1, x1)] [s] exp

(
−σ

2

2
s2
)

= F
[
ψθ(y0, y1, x1,m

−1
β (y1, x2, τ))

]
[s],

where F [g] [s] =
∫ +∞
−∞ g(z) exp(izs)dz denotes the Fourier transform operator, and we have

used that the characteristic function of a N (0, σ2) is given by s 7→ exp
(
−σ2

2
s2
)
. More

explicitly, we have∫ +∞

−∞
ϕθ(y0, y1, y2, x1, x2) exp(isy2)dy2

=

∫ +∞

−∞
ψθ(y0, y1, x1,m

−1
β (y1, x2, τ)) exp

(
isτ +

σ2

2
s2
)
dτ

=

∫ +∞

−∞
ψθ(y0, y1, x1, a)

∂mβ(y1, x2, a)

∂a
exp

(
ismβ(y1, x2, a) +

σ2

2
s2
)
da,

where we have used the change in variables a 7→ τ = mβ(y1, x2, a).

However, the inverse problem may not have solutions since the inverse Fourier transform

1

2π

∫ +∞

−∞
exp(−isy2)

[∫ +∞

−∞
ψθ(y0, y1, x1, a)

∂mβ(y1, x2, a)

∂a
exp

(
ismβ(y1, x2, a) +

σ2

2
s2
)
da

]
ds
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may not be well-defined. To address this issue, our strategy is to regularize the problem, and

compute the regularized inverse

ϕλ
θ (y0, y1, y2, x1, x2)

=
1

2π

∫ +∞

−∞
λκ(λs) exp(−isy2)

[∫ +∞

−∞
ψθ(y0, y1, x1, a)

∂mβ(y1, x2, a)

∂a
exp

(
ismβ(y1, x2, a) +

σ2

2
s2
)
da

]
ds

=

∫ +∞

−∞
ψθ(y0, y1, x1, a)

∂mβ(y1, x2, a)

∂a

[
1

2π

∫ +∞

−∞
λκ(λs) exp

(
is(mβ(y1, x2, a)− y2) +

1

2
σ2s2

)
ds

]
da

=

∫ +∞

−∞
ψθ(y0, y1, x1, a)

∂mβ(y1, x2, a)

∂a
Kλ

(
mβ(y1, x2, a)− y2

λ

)
da,

which is always well-defined (under suitable conditions so that the integrals can be inter-

changed). This is similar to the strategy used in kernel nonparametric deconvolution (Ste-

fanski and Carroll, 1990).

The expectation of this regularized inverse is

E
[
ϕλ
θ (Y0, Y1, Y2, X1, X2) |Y0, X1

]
= E

[∫ +∞

−∞
ψθ(Y0, Y1, X1, a)

∂mβ(Y1, X2, a)

∂a
Kλ

(
mβ(Y1, X2, a)− Y2

λ

)
da |Y0, X1

]
=

1

2π

∫ +∞

−∞
λκ(λs)

∫ +∞

−∞
E
[
ψθ(Y0, Y1, X1, a)

∂mβ(Y1, X2, a)

∂a

× exp

(
λis

mβ(Y1, X2, a)− Y2
λ

+
1

2
σ2s2

)
|Y0, X1

]
dads

=
1

2π

∫ +∞

−∞
λκ(λs)

∫ +∞

−∞
E
[
ψθ(Y0, Y1, X1, a)

∂mβ(Y1, X2, a)

∂a

× exp

(
λis

mβ(Y1, X2, a)− εi2 −mβ(Y1, X2, A)

λ
+

1

2
σ2s2

)
|Y0, X1

]
dads

=

∫ +∞

−∞
E
[
ψθ(Y0, Y1, X1, a)

∂mβ(Y1, X2, a)

∂a

× 1

2π

∫ +∞

−∞
λκ(λs) exp (is(mβ(Y1, X2, a)−mβ(Y1, X2, A))) ds |Y0, X1

]
da

=

∫ +∞

−∞
E
[
ψθ(Y0, Y1, X1, a)

∂mβ(Y1, X2, a)

∂a

× 1

2π

∫ +∞

−∞
κ(u) exp

(
i
u

λ
(mβ(Y1, X2, a)−mβ(Y1, X2, A))

)
du |Y0, X1

]
da.

Since
∣∣κ(u) exp (iu

λ
(mβ(Y1, X2, a)−mβ(Y1, X2, A)

)∣∣ ≤ |κ(u)| and by assumption |κ(u)| is
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integrable, the dominated convergence theorem implies

lim
λ→0

E
[
ϕλ
θ (Y0, Y1, Y2, X1, X2) |Y0, X1

]
=

∫ +∞

−∞
E
[
ψθ(Y0, Y1, X1, a)

∂mβ(Y1, X2, a)

∂a
δ(mβ(Y1, X2, a)−mβ(Y1, X2, A)) |Y0, X1

]
da,

where δ(·) denotes Dirac’s delta. Finally, since by assumption a 7→ mβ(y1, x2, a) is strictly

increasing we have

lim
λ→0

E
[
ϕλ
θ (Y0, Y1, Y2, X1, X2) |Y0, X1

]
=

∫ +∞

−∞
E [ψθ(Y0, Y1, X1, a)δ(a− A) |Y0, X1] da

= E
[∫ +∞

−∞
ψθ(Y0, Y1, X1, a)δ(a− A)da |Y0, X1

]
= E [ψθ(Y0, Y1, X1, A) |Y0, X1]

= 0,

where the first line follows from the composition property with the Dirac delta.
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